Tetrahedron Letters 49 (2008) 2839-2843

Tetrahedron Letters

Alternative approaches to (Z)-1,2-bis(2-bromopyridin-3-yl)ethenes, key intermediates in the synthesis of the 1,10-phenanthroline core

Giorgio Chelucci^{a,*}, Salvatore Baldino^a, Gerard A. Pinna^b, Barbara Sechi^c

^a Dipartimento di Chimica, Università di Sassari, via Vienna 2, I-07100 Sassari, Italy
^b Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Via Muroni 23, I-07100 Sassari, Italy
^c Istituto di Chimica Biomolecolare, CNR, Traversa La Crucca 3, Baldinca, I-07040 Sassari, Italy

Received 16 January 2008; revised 11 February 2008; accepted 15 February 2008 Available online 26 February 2008

Abstract

A study on the synthesis of (*Z*)-1,2-bis(2-bromopyridin-3-yl)ethenes, key intermediates in the preparation of 1,10-phenanthrolines, based on selective Sonogashira and Suzuki–Miyaura cross-coupling reactions has been carried out. © 2008 Elsevier Ltd. All rights reserved.

Keywords: (Z)-Alkenes; Alkynes; Nitrogen heterocycles; Sonogashira reaction; Suzuki-Miyaura reaction; Palladium catalysts

We have recently reported a new protocol for the synthesis of substituted 1,10-phenanthrolines 1, which serve as essentially universal ligands for metals, by the de novo construction of the phenanthroline core (Scheme 1). The approach is hinged upon the Ullmann intramolecular coupling of *cis*-1,2-bis(2-bromopyridin-3-yl)ethenes 2 that are in turn obtained by Wittig reaction of 2-bromonicotinalde-

Scheme 1.

hydes **3** with phosphonium salts **4** prepared from 2-bromo-3-(bromomethyl)pyridines.

Since the crucial point of this approach is the obtainment of **2**, we decided to explore alternative routes to the Wittig reaction that affords **2** in high yields, but in several cases fails to give good cis/trans stereoselectivity. Moreover, the phosphonium salts **4** are not easily available. Besides the Wittig and related reactions,³ the main routes to the preparation of (*Z*)-alkenes are the cis-hydrogenation of alkynes⁴ and the metal-catalyzed cross-coupling reactions of stereodefined substituted alkenes.⁵ Based on this background, we herein report the results obtained in the synthesis of **2** tackling the last two approaches by selective Sonogashira and Suzuki–Miyaura cross-coupling reactions.

In order to prepare 2 via semihydrogenation of alkynes, a valuable method to obtain dipyridylethynes was required. Among the several approaches to obtain internal alkynes we devoted our attention to Sonogashira palladium-catalyzed cross-coupling reaction, taking into account that the reactivity of halogens toward coupling reactions is known to be $I > Br \gg Cl$ and that the positions *ortho* or *para* to the nitrogen of pyridine are usually reactive enough with chlorine to give acceptable yields of coupled products,

^{*} Corresponding author. Tel.: +39 079 229539; fax: +39 079 229559. E-mail address: chelucci@uniss.it (G. Chelucci).

Scheme 2. Reagents and conditions: (a) LDA, THF, -95 °C, then I_2 -THF, 82%; (b) $Pd(PPh_3)_2Cl_2$, TMS-acetylene, CuI, Et_3N , 1.5 h, 85%; (c) KOH, MeOH, 1.5 h, 83%; (d) 6, $Pd(PPh_3)_2Cl_2$, CuI, Et_3N , rt, 2.5 h, 46%; (e) 6, $Pd(PPh_3)_2Cl_2$, CuI, DBU, H_2O , benzene, 7 h, 70%; (f) $Pd(PPh_3)_2Cl_2$, CuI, DBU, H_2O , benzene, 7 h, 65%; (g) H_2 (4 atm), 5% Pd on BaSO₄, benzene, 24 h, 51%.

whereas meta positions require bromine, iodine, or triflates for sufficient reactivity.⁸

On this basis we examined the Sonogashira reaction of 2-bromo-3-iodopyridine 6⁹ with an excess of TMS-acetylene under Sogonashira conditions (Scheme 2). The reaction [Pd(PPh₃)₂Cl₂, CuI, Et₃N, 25 °C] after 18 h afforded only the diacetylene adduct 8¹⁰ in 65% yield, but when the reaction was stopped after 1.5 h the desired monoacetylene product 7 was isolated in 85% yield. After TMS deprotection with methanolic KOH (MeOH, 1.5 h, 83%), the resulting 2-bromo-3-ethynylpyridine 9 was coupled in the usual way (2.5 h) with 6 to give dipyridylethyne 10 in 46% yield. In order to avoid the silane deprotection step, the direct conversion of 7 to 10 was then examined. Treatment of 7 with 6 under modified Sonogashira conditions¹¹ [Pd(PPh₃)₂Cl₂, CuI, DBU-H₂O, benzene, rt, 7 h] afforded 10 in 70% yield. This satisfactory result encouraged us to carry out two sequential cross-coupling reactions starting from 6 in one-pot. Thus, the treatment of 6 with TMSacetylene in the presence of DBU [Pd(PPh₃)₂Cl₂, CuI, DBU-H₂O, benzene, rt, 7 h] afforded **10** in 65% yield. 12

The semihydrogenation of 10 was initially pursued using Lindlar's catalyst at atmospheric pressure, but although a variety of conditions (substrate/catalyst = 1/0.1 to 1/1; MeOH or benzene; 25-50 °C) were examined, no reaction was observed. The hydrogenation was then performed using 5% palladium on Ba₂SO₄ at atmospheric pressure. With MeOH as the solvent complete hydrogenation to 1,2-bis(2-bromopyridin-3-yl)ethane occurred after 3.5 h, and without it was possible to detect the formation of the intermediate semihydrogenation alkene 11. On the other hand, the formation of 11 took place using benzene as the solvent, though the reaction was very slow and a large amount of the catalyst was required. Therefore, the reaction was performed in a Parr apparatus under pressure. The best conditions to obtain 11 were found by carrying out the hydrogenation in benzene for 24 h at 4 atm and using a w/w ratio of substrate/catalyst = 1/2(51% yield).

We next went on to carry out the preparation of 10 following a different coupling reaction that considers the cross-coupling of a 1-haloalkyne with a pyridyl metal reagent. Among the possible 3-metalated 2-bromopyridines we decided to exploit organoboron derivatives because boronated pyridines have been profitably used for Suzuki–Miyaura cross-coupling reactions. Moreover, 2-bromopyridin-3-yl-boronic acid or esters are now easily available via halogen–metal exchange or directed *ortho*-metalation. 14

The first step in this direction was the preparation of 2bromo-3-(2-bromoethynyl)pyridine 14 by dehydrobromination of 1,1-dibromoalkene 13 (t-BuOK, THF, 0 °C to rt, 3 h, 95%) that was in turn obtained from 2-bromonicotinaldehyde 12¹⁵ according to Corey and Fuchs procedure¹⁶ (CBr₄, PPh₃, CH₂Cl₂, 0 °C to rt, 1 h, 85%) (Scheme 3). With 1-bromoalkyne 14 in hand its coupling with pyridylborate ester 17 was examined under a variety of palladiumcatalyzed cross-coupling conditions. Initially, carrying out the coupling of 14 with 17 [Pd(PPh₃)₄, KOH, Bu₄NBr, THF, reflux, 6 h], the disappearance of the starting material was observed, but no dipyridylalkyne derivative 10 was detected. Disappointing results were also obtained by changing the base and the solvent [Pd(PPh₃)₄, K₂CO₃, THF-H₂O (or 1,4-dioxane-H₂O), reflux, up to 72 h]. In order to determine if the results were imputable to bromoalkyne 14 or to 17, the cross-coupling of 14 with 3-(diethylboryl)pyridine 18 was inspected. 17 Under the usual conditions the reaction failed to give alkyne 15 that on the contrary was obtained in 17% yield when Cs₂CO₃ was used as the base [Pd(PPh₃)₄, Cs₂CO₃, 1,4-dioxane-H₂O, 65 °C, 72 h]. Similar results (20% yield) were obtained when catalytic Bu₄NBr was employed.

These disappointing results prompted us to examine an alternative procedure that starting from 13 inverts the dehydrobromination-coupling steps (Scheme 3). Thus, 13 was cross-coupled with 17 in the presence of Pd₂dba₃ and TFP¹⁸ to give the expected monoarylated compound 16 in 90% yield¹⁹ and then dehydrobrominated with DBU²⁰

Download English Version:

https://daneshyari.com/en/article/5281942

Download Persian Version:

https://daneshyari.com/article/5281942

Daneshyari.com