
Decision forest: Twenty years of research

Lior Rokach ⇑
Department of Information Systems Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel

a r t i c l e i n f o

Article history:
Received 5 May 2015
Received in revised form 8 June 2015
Accepted 15 June 2015
Available online 20 June 2015

Keywords:
Decision tree
Decision forest
Random forest
Classification tree

a b s t r a c t

A decision tree is a predictive model that recursively partitions the covariate’s space into subspaces such
that each subspace constitutes a basis for a different prediction function. Decision trees can be used for
various learning tasks including classification, regression and survival analysis. Due to their unique
benefits, decision trees have become one of the most powerful and popular approaches in data science.
Decision forest aims to improve the predictive performance of a single decision tree by training multiple
trees and combining their predictions. This paper provides an introduction to the subject by explaining
how a decision forest can be created and when it is most valuable. In addition, we are reviewing some
popular methods for generating the forest, fusion the individual trees’ outputs and thinning large deci-
sion forests.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

A decision tree is a predictive model expressed as a recursive
partition of the covariates space to subspaces that constitute a
basis for prediction. Decision trees have become one of the most
powerful and popular approaches in data science—the science
and technology of exploring large and complex bodies of data in
order to discover useful patterns. Decision trees, originally devel-
oped in decision theory and statistics, were enhanced by research-
ers in other fields, such as: data mining, machine learning, and
pattern recognition.

While a decision tree has many advantages, such as comprehen-
sibility, it still suffers from several drawbacks—instability, for
instance. One way to realize the full potential of decision trees is
to build a decision forest. A decision forest, as its name implies,
consists of several decision trees in which their predictions are
combined into a final prediction. By building a forest, the mistakes
of a single decision tree are compensated for by other decision
trees in the forest. A recent study [1] that empirically compared
179 classification algorithms arising from 17 learning families over
121 datasets concluded that decision forests, and in particular ran-
dom forests, tend to outperform other learning methods. The key
to the improved predictive performance is the complementarity
of the base decision trees included in the forest. Moreover, while
the decision forest requires growing several decision trees, it is still
considered very attractive in terms of computational cost because

of the low computational cost of the base tree induction algorithm
[2].

There are several excellent reviews on ensemble learning that
were recently published in the literature [3,4]. However, these cur-
rent reviews do not specifically focus on the decision forest, but
rather discuss ensemble learning in general. Thus, the insights that
were gained for decision forest and cannot be generalized to other
ensemble learning methods are usually not sufficiently empha-
sized, to say the least. On the other hand, there are several surveys
[5,6] which solely focus on random forest and its variants. While
random forest is the most popular decision forest algorithm, there
are other useful methods for building decision forests. A recent
book edited by Criminisi and Shotton [7] presents a unified model
of decision forests for addressing various learning tasks. This excel-
lent and highly recommenced book covers theoretical foundations,
practical implementation and application of decision forests.
However, it does not discuss important issues such as scaling up
decision forests methods for big data and decision forest thinning.

This paper aims to serve as an introductory reading to decision
forest and to survey the state-of-the-art methods in the field. The
rest of the paper is organized as follows: Section 2 briefly intro-
duces decision trees that serve as the building blocks of decision
forest. In particular, we show how decision trees are usually
trained, what their advantages and disadvantages are, and how
they can be used in various learning tasks other than classification.
Section 3 introduces the concept of the decision forest, explains
why decision forests work, and in which problem setting they
are particularly useful. Section 4 presents various approaches for
growing a decision forest. Section 5 explains how the outputs of
the individual decision trees are fused. Section 6 reviews some of

http://dx.doi.org/10.1016/j.inffus.2015.06.005
1566-2535/� 2015 Elsevier B.V. All rights reserved.

⇑ Tel.: +972 8 6479338; fax: +972 8 6477527.
E-mail address: liorrk@bgu.ac.il

Information Fusion 27 (2016) 111–125

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier .com/locate / inf fus

http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2015.06.005&domain=pdf
http://dx.doi.org/10.1016/j.inffus.2015.06.005
mailto:liorrk@bgu.ac.il
http://dx.doi.org/10.1016/j.inffus.2015.06.005
http://www.sciencedirect.com/science/journal/15662535
http://www.elsevier.com/locate/inffus


the most popular methods for building decision forests. Section 7
discusses how the size of a decision forest can be reduced by dis-
carding trees that do not contribute to the forest performance as
a whole. Finally, Section 8 concludes the paper.

2. Individual decision trees – the building blocks of decision
forest

A decision tree is a predictive model expressed as a recursive
partition of the covariates space to subspaces that constitute a
basis for prediction. The decision tree consists of nodes. Starting
with the entire dataset, the root node corresponds to the first split
which specifies how the data should be divided into disjoint parti-
tions. The succeeding children nodes continue to split the data into
smaller partitions until no further partitioning is required. The
leaves represent the final partitions.

The ‘‘root” node has no incoming edges. The internal nodes (also
known as ‘‘test” nodes) have exactly one incoming edge and two or
more outgoing edges. Every internal node denotes a test to be
checked on the instances. Each branch (outgoing edge) represents
an outcome of the test. The ‘‘leaves” nodes (also known as ‘‘deci-
sion” nodes) have no outgoing edges and hold the predicted value
or the prediction model.1 A single node decision tree which contains
a root node and leaves and no other internal nodes is sometimes
called a decision stump.

Decision trees are commonly used for classification tasks. The
aim of classification is to classify an object or an instance into a
predefined set of classes based on their attributes’ values (fea-
tures). For example, in the well-known Iris flower dataset [8], the
goal is to classify the flowers into three sub-species of Iris (Iris
Setosa, Iris Versicolor and Iris Virginica) based on four classified
measurements of the flower: the petals’ width, the petals’ length,
the sepals’ width and sepals’ length—all in centimeters. When a
decision tree is used for classification tasks, it is most commonly
referred to as a classification tree. In this case the leaves’ nodes
hold either the predicted class or class distribution.

Fig. 1 illustrates a classification tree for the Iris dataset. The
internal nodes contain the tested feature. The leaves contain the
number of instances and the class distribution.2 Similarly to the
classification tree presented in Fig. 1, most decision trees are univari-
ate in the sense that the branching test that determines which
instances fall into which partition, uses only one feature at a time.
Instances are classified by navigating them from the root of the tree
down to a leaf according to the outcome of the tests along the path
similar to a flowchart. First, we test the petal’s length in the root
node (node #1). If the petal’s length is less than 1.9 cm, we branch
to the left and reach a leaf node (node #2). As indicated in the figure,
this leaf node consists of 50 instances (n = 50) and the class distribu-
tion is clearly biased toward the Iris Setosa class. If the petal’s length
is greater than 1.9 cm, we branch to the right and reach to another
test node (node #3) which tests the petal’s width. The tree continues
to branch out until we reach a leaf. Note that the prediction is based
only on which leaf a given instance falls into.

Decision trees split the covariate space into disjointed parti-
tions. One way to better understand the decision tree is to visualize
the covariate space along with the selected partition boundaries.
The bottom part of Fig. 1 presents a two-dimension projection
scatterplot using the features that were chosen to be tested in

the tree. A univariate decision tree divides the space into axis-
parallel hyperplans. The scatterplot illustrates the corresponding
partition of the feature space by adding the partition boundaries.
In this case, there are four hyperplans (boxes) in the plot. Each
box corresponds to exactly one leaf in the classification tree. We
can visually induce the class distribution of each box based on
the instances that are located in it.

2.1. Growing a decision tree

The basic decision tree induction algorithm constructs decision
trees in a top-down recursive divide-and-conquer manner. In each
iteration, the algorithm searches for the best partition of the data-
set. Recall that many decision trees are univariate i.e. the dataset is
split according to the value of a single attribute. Thus, in such
cases, the algorithm needs to find the best splitting attribute. The
selection of the most appropriate attribute is made according to
certain splitting criteria, such as information gain or the Gini coef-
ficient. All possible attributes are evaluated according to the split-
ting criterion and the best attribute is selected. After the selection
of an appropriate split, each node further subdivides the training
set into smaller subsets and the process continues in a recursive
manner. Note that for numeric attributes, it is common to create
a binary partition which splits the attribute’s value range into
two parts. Because there are many possible cut points, the induc-
tion algorithm searches for the best cut point by evaluating the
splitting criterion on each possible cut point.

The growing phase continues until a stopping criterion is trig-
gered. Many stopping criteria can be used to control the growing
process. For example the process can be stopped if all instances
in the current partition belong to a single class or if the number
of instances in the terminal node is less than a predefined mini-
mum. In addition, statistically motivated stopping criteria can be
implemented via hypothesis tests. The null hypothesis states that
the current tree and the resultant tree obtained—following an
additional split—perform equally. If the null hypothesis cannot be
rejected than the growing process is stopped.

Employing tight stopping criteria tends to create small and
underfitted decision trees. Conversely, using loose stopping criteria
tends to generate large bushy decision trees. Complicated decision
trees might have limited generalization capabilities. Although they
seem to correctly classify all training instances, they fail to do so in
new and unseen instances, mainly because they are overfitted to
the training set. One way to mitigate this dilemma is to allow
the decision tree to overfit the training set. Then the overfitted tree
is pruned into a smaller tree by removing sub-branches that are
not contributing to the generalization predictive performance. It
has been shown in various studies that this pruning approach
can improve the generalization predictive performance of a deci-
sion tree, especially in noisy domains.

Probably the most popular decision tree induction algorithms
are C4.5 [9], and CART [10]. Both algorithms are top-down induc-
tion algorithms that use splitting criterion and pruning methods
as described above. There are several open source implementations
of the above two popular algorithms: For example, J4.8 is a Java
implementation of the C4.5 algorithm in the Weka data mining
tool [11] and rpart package [12] is an R package implementation
of the CART algorithm. While these implementations are expected
to perform similarly, a comparative study indicates that this is not
always the case [13].

In this section, we focused on greedy top-down induction of
decision trees due to their simplicity and popularity. The looka-
head strategy aims to improve the greedy strategy by exploring
the space of all possible decision trees up to a fixed depth. This
more extensive search quickly leads to intolerable time consump-
tion. Moreover, limited a lookahead search does not produce

1 In classification trees the leaves usually hold either the predicted class (most
frequent class) or the class distribution. In regression trees it is usually the mean
value of the target variable. But more complex models exist such as survival trees that
hold a survival model in each node.

2 The visualized tree contains only the counts for the tree’s leaves. However, it is
easy to calculate the counts for the internal nodes by simply summing the values of
each node’s children recursively, from the leaves to the root node.

112 L. Rokach / Information Fusion 27 (2016) 111–125



Download English Version:

https://daneshyari.com/en/article/528229

Download Persian Version:

https://daneshyari.com/article/528229

Daneshyari.com

https://daneshyari.com/en/article/528229
https://daneshyari.com/article/528229
https://daneshyari.com

