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a b s t r a c t

The information fusion estimation problems are investigated for multi-sensor stochastic uncertain sys-
tems with correlated noises. The stochastic uncertainties caused by correlated multiplicative noises exist
in the state and observation matrices. The process noise and the observation noises are one-step
auto-correlated and two-step cross-correlated, respectively. While the observation noises of different
sensors are one-step cross-correlated. The optimal centralized fusion filter, predictor and smoother are
proposed in the linear minimum variance sense via an innovative analysis approach. To enhance the
robustness and flexibility, a distributed fusion filter is put forward, which requires the calculation of fil-
tering error cross-covariance matrices between any two local filters. To avoid the calculation of
cross-covariance matrices, another distributed fusion filter is also presented by using the covariance
intersection (CI) fusion algorithm, which can reduce the computational cost. A simulation example is
given to show the effectiveness of the proposed algorithms.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the research on networked control systems and
sensor networks has attracted much attention due to their wide
applications [1–5]. In networked control systems, random delays
and missing measurements are unavoidable due to the limited
communication capability. This kind of systems can be trans-
formed into stochastic uncertain parameterized systems with mul-
tiplicative noises. Recent results on the estimation problems with
random time delays and packet dropouts during data transmission
have been reported [6–9].

In fact, with the expanding of the scale and complexity of con-
trol systems, in addition to the uncertainty of transmission delays
and losses induced by networks, various external immeasurable
disturbances widely exist. One of them is stochastic multiplicative
noise which makes the system nonlinear. This makes it harder to
design an estimator and controller. They widely exist in the engi-
neering applications. For example, the parameter uncertainties of
the systems can be described by multiplicative noises. The systems
with missing measurements, quantization effects and randomly
occurring sensor saturations can be converted into the model with
multiplicative noises [10,11]. Nonlinear polynomial filters are pre-
sented for systems with multiplicative noises [12]. However, it is

not suitable for real-time applications since the algorithm has an
expensive computational cost. To reduce the computational bur-
den, linear optimal estimators are designed based on an innovation
analysis approach [13].

In most filtering algorithms, it is usually assumed that the
observation noises of different sensors are uncorrelated.
However, in the engineering applications, a lot of practical systems
involve the correlated noises. For example, correlated noises exist
in systems which observe a dynamic process in a common noisy
environment. The correlated noises will be brought by discretizing
a continuous-time system or transforming a descriptor system into
a normal one [14]. Some estimation algorithms for this kind of sys-
tems have been presented in the recent works [15–28]. The filter-
ing algorithms are designed for nonlinear systems with correlated
noises in [15–17] where the process and measurement noises are
only correlated at the same time. The Kalman-type filters have
been designed for systems with finite-step auto-correlated noises
[18,19]. A recursive Kalman-type filter has been also designed for
descriptor systems with one-step auto-correlated observation
noises and packet dropouts [20]. However, the filters in [18–20]
are suboptimal since they are fixed as the Kalman-type forms.
Recently, the optimal filter is designed for a class of uncertain
dynamical systems with finite-step correlated noises and packet
dropouts [21]. However, the aforementioned literatures are con-
fined to the single-sensor systems. Multiple sensors are not taken
into account.
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With the development of science and technology, in order to
meet the higher accuracy requirements, the information fusion fil-
ters for multi-sensor systems have been widely applied. The tradi-
tional methods include the centralized and distributed fusion
filtering algorithms. As everyone knows, the former has the best
accuracy when all sensors work healthily. Its main drawbacks are
the bad robustness and flexibility. The latter can overcome those
shortcomings and maintain higher accuracy than local estimators.
Recently, [22] investigates the optimal filtering problem for a class
of discrete-time stochastic systems with random parameter matri-
ces and correlated additive noises. The multiplicative noises
between state and observation matrices are uncorrelated.
Moreover, a centralized fusion filter is given to treat the networked
systems with the one-step delays and missing measurements.
However, the centralized fusion multi-step predictor and smoother
are not investigated. Moreover, the distributed fusion filter is not
also studied, which has better robustness and flexibility than the
centralized fusion filter. A Kalman-type centralized fusion filter
has been designed in [23] for a nonlinear system with random
parameter matrices, multiple fading measurements and correlated
noises. For multi-sensor systems with cross-correlated observation
noises, the distributed Kalman filtering fusion problem is investi-
gates in [24] where both with and without feedback from the
fusion center to local sensors are discussed. For uncertain systems
with auto- and cross-correlated noises, the suboptimal
Kalman-type local filter and distributed fusion filter are designed
[25] by using the matrix-weighted fusion estimation algorithm in
[26]. For multi-sensor systems with the cross-correlated noises,
the sequential and distributed fusion filtering problems are studied
in [27]. Recently, the centralized and distributed fusion filters are
also designed for multi-sensor systems with missing measure-
ments and correlated noises in [28]. However, the stochastic
uncertainties of systems are not taken into account in [27,28].

In aforementioned literatures [25–28], the proposed distributed
fusion filters require the computation of cross-covariance matrices
between any two local filters. However, sometimes the calculation
of cross-covariance matrices may be complex and difficult; even be
impossible in many practical applications. Then the distributed
fusion algorithms in [25–28] are no longer applicable. To overcome
the limitations, the covariance intersection (CI) fusion method is
presented in [29–31]. The CI fusion method avoids the calculation
of cross-covariance matrices between any two local estimators and
can obtain higher accuracy than any local filters.

Motivated by the above considerations, this paper is written to
solve the information fusion estimation problems for
multi-sensor stochastic uncertain systems with auto- and
cross-correlated noises. The stochastic uncertainties of correlated
multiplicative noises exist in state and observation matrices.
Firstly, a centralized fusion filter is presented via an innovation
analysis approach. Based on it, the centralized fusion multi-step
predictor and smoother are also presented. It is well known that
centralized fusion filter has bad robustness and flexibility though
it can obtain the best filtering accuracy when all sensors work
healthily. Then, a distributed fusion filter with the robustness and
flexibility is presented by using matrix-weighted fusion estimation
algorithm in the linear minimum variance sense [26]. Filtering error
cross-covariance matrices between any two local filters are derived.
To reduce the computational cost, another distributed fusion filter
that avoids the calculation of cross-covariance matrices is also
given by using the CI fusion algorithm [29–31]. It has worse accu-
racy than the distributed fusion filter weighted by matrices but bet-
ter accuracy than any local filter.

The rest is organized as follows: In Section 2, the studied prob-
lem is formulated. In Section 3, the centralized fusion filter, predic-
tor and smoother are designed. In Section 4, the distributed
matrix-weighted fusion filter and distributed CI fusion filter are

presented. In Section 5, a simulation example is given. The last part
of this paper is the conclusion. Appendices A–D provide the math-
ematical details.

Nations: superscript T denotes the transpose; E denotes the
mathematical expectation; tr denotes the trace of a matrix; dtk is
the Kronecker delta function; Ipi

is a pi by pi identity matrix; 1pipj

is a pi by pj matrix of all ones; � is the Hadamard product; ?
denotes orthogonality. diagð�Þ is the diagonal matrix whose
diagonal elements consist of ‘‘�’’; Superscript ðiÞ; ðoÞ; ðcÞ and ðCIÞ
means the ith sensor, distributed weighted fusion, centralized opti-
mal fusion and covariance intersection (CI) fusion, respectively.
x̂ð�j�Þ denotes the estimate of stochastic variable xð�Þ based on
information �, i.e., the projection of xð�Þ on the linear space
generated by information �. ~xð�j�Þ ¼ xð�Þ � x̂ð�j�Þ denotes the esti-

mation error. PðabÞ
xy ð�j�Þ is the covariance matrix between estimation

errors ~xðaÞð�j�Þ and ~yðbÞð�j�Þ, with PðaaÞ
xy ð�j�Þ ¼ PðaÞxy ð�j�Þ and

PðabÞ
xx ð�j�Þ ¼ PðabÞ

x ð�j�Þ.

2. Problem formulation

Consider the following stochastic uncertain system with multi-
ple sensors:
xðt þ 1Þ ¼ ðUðtÞ þ fðtÞFðtÞÞxðtÞ þ CðtÞwðtÞ ð1Þ

yðiÞðtÞ ¼ ðHðiÞðtÞ þ nðiÞðtÞCðiÞðtÞÞxðtÞ þ v ðiÞðtÞ; i ¼ 1;2; . . . ; L ð2Þ

where xðtÞ 2 Rn is the system state to be estimated. yðiÞðtÞ 2 Rpi ;

i ¼ 1;2; . . . ; L is the observation of the ith sensor, L is the number
of sensors. fðtÞ 2 R and nðiÞðtÞ 2 R; i ¼ 1; . . . ; L are scalar multiplica-
tive noises. wðtÞ 2 Rm and v ðiÞðtÞ 2 Rpi are the process noise and

observation noise of the ith sensor. UðtÞ; FðtÞ;CðtÞ;HðiÞðtÞ and CðiÞðtÞ
are known time-varying matrices with suitable dimensions.

Assumption 1. fðtÞ and nðiÞðtÞ; i ¼ 1; . . . ; L are correlated white
noises satisfying

E½fðtÞ� ¼ 0; E½nðiÞðtÞ� ¼ 0; E½fðtÞfTðkÞ� ¼ Q fðtÞdt;k;

E½nðiÞðtÞnðjÞTðkÞ� ¼ Q ðijÞn ðtÞdt;k; E½fðtÞnðiÞTðkÞ� ¼ Q ðiÞfn ðtÞdt;k ð3Þ

where Q ðiiÞn ðtÞ ¼ Q ðiÞn ðtÞ.
It is clear from (3) that state multiplicative noise fðtÞ and

observation multiplicative noises nðiÞðtÞ; i ¼ 1; . . . ; L are correlated
with each other at the same moment, which can be found in
networked systems [4,6,32] where the networked systems with
random delays and packet losses are transformed into those with
correlated multiplicative noises in the state and measurement
matrices.

Assumption 2. wðtÞ and v ðiÞðtÞ are correlated white noises
satisfying

E½wðtÞ� ¼ 0;E½v ðiÞðtÞ� ¼ 0; E½wðtÞwTðkÞ� ¼Qðt;kÞðdt;kþ dt;k�1þ dt;kþ1Þ

E½v ðiÞðtÞv ðjÞTðkÞ� ¼ RðijÞðt;kÞðdt;kþ dt;k�1þ dt;kþ1Þ; E½wðtÞv ðiÞTðkÞ�

¼ SðiÞðt;kÞðdt;kþ dt;k�1þ dt;k�2Þ ð4Þ

where RðiiÞðt; kÞ ¼ RðiÞðt; kÞ. wðtÞ and v ðiÞðtÞ; i ¼ 1;2; . . . ; L are indepen-
dent of fðtÞ and nðjÞðtÞ; j ¼ 1;2; . . . ; L.

We can draw the conclusion from (4) that the process noise and
the observation noises are one-step auto-correlated, respectively.
The observation noises of different sensors are one-step
cross-correlated. Process noise and observation noises are
two-step forward cross-correlated.
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