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a b s t r a c t

We describe a methodology for optimizing a threshold detection-based biosurveillance system. The goal
is to maximize the system-wide probability of detecting an ‘‘event of interest” against a noisy back-
ground, subject to a constraint on the expected number of false signals. We use nonlinear programming
to appropriately set detection thresholds taking into account the probability of an event of interest occur-
ring somewhere in the coverage area. Using this approach, public health officials can ‘‘tune” their biosur-
veillance systems to optimally detect various threats, thereby allowing practitioners to focus their public
health surveillance activities. Given some distributional assumptions, we derive a one-dimensional opti-
mization methodology that allows for the efficient optimization of very large systems. We demonstrate
that optimizing a syndromic surveillance system can improve its performance by 20–40%.

Published by Elsevier B.V.

1. Introduction

Biosurveillance is the practice of monitoring populations – hu-
man, animal, and plant – for the outbreak of disease. Often making
use of existing health-related data, one of the principle objectives
of biosurveillance systems has been to give early warning of biot-
errorist attacks or other emerging health conditions [4]. The Cen-
ters for Disease Control and Prevention (CDC) as well as many
state and local health departments around the United States are
developing and fielding syndromic surveillance systems, one type
of biosurveillance.

A syndrome is ‘‘A set of symptoms or conditions that occur to-
gether and suggest the presence of a certain disease or an increased
chance of developing the disease” [17]. In the context of syndromic
surveillance, a syndrome is a set of non-specific pre-diagnosis
medical and other information that may indicate the health effects
of a bioterrorism agent release or natural disease outbreak. See, for
example, Syndrome Definitions for Diseases Associated with Criti-
cal Bioterrorism-associated Agents [3]. The data in syndromic sur-
veillance systems may be clinically well-defined and linked to
specific types of outbreaks, such as groupings of ICD-9 codes from
emergency room ‘‘chief complaint” data, or only vaguely defined
and perhaps only weakly linked to specific types of outbreaks, such

as over-the-counter sales of cough and cold medication or absen-
teeism rates.

Since its inception, one focus of syndromic surveillance has
been on early event detection: gathering and analyzing data in
advance of diagnostic case confirmation to give early warning of
a possible outbreak. Such early event detection is not supposed
to provide a definitive determination that an outbreak is occurring.
Rather, it is supposed to signal that an outbreak may be occurring,
indicating a need for further evidence or triggering an investigation
by public health officials (i.e., the CDC or a local or state public
health department). See Fricker [10,9] and Fricker and Rolka [11]
for more detailed exposition and discussion.

BioSense and EARS are two biosurveillance applications cur-
rently in use. The first is a true system, in the sense that it is com-
prised of dedicated computer hardware and software that collect
and evaluate data routinely submitted from hospitals. The second
is a set of software programs that are available for implementation
by any public health organization.

� BioSense was developed and is operated by the National Center
for Public Health Informatics of the CDC. It is intended to be a
United States-wide electronic biosurveillance system. Begun in
2003, BioSense initially used Department of Defense and
Department of Veterans Affairs outpatient data along with
medical laboratory test results from a nationwide commercial
laboratory. In 2006, BioSense began incorporating data from
civilian hospitals as well. The primary objective of BioSense is
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to ‘‘expedite event recognition and response coordination
among federal, state, and local public health and health care
organizations” [10,5,22,23]. As of May 2008, BioSense was
receiving data from 563 facilities [7].

� EARS is an acronym for Early Aberration Reporting System.
Developed by the CDC, EARS was designed to monitor for bioter-
rorism during large-scale events that often have little or no
baseline data (i.e., as a short-term drop-in surveillance method)
[6]. For example, the EARS system was used in the aftermath of
Hurricane Katrina to monitor communicable diseases in Louisi-
ana, for syndromic surveillance at the 2001 Super Bowl and
World Series, as well as at the Democratic National Convention
in 2000 [24,15]. Though developed as a drop-in surveillance
method, EARS is now being used on an on-going basis in many
syndromic surveillance systems.

A characteristic of some syndromic surveillance systems is that
the data collection locations (typically hospitals and clinics) are in
fixed locations that may or may not correspond to a particular
threat of either natural disease or bioterrorism. In order to provide
comprehensive population coverage, syndromic surveillance sys-
tem designers and operators are inclined to enlist as many hospi-
tals and clinics as possible. However, as the sources and types of
data being monitored proliferate in a biosurveillance system, then
so do the false positive signals from the systems. Indeed, false pos-
itives have become an epidemic problem for some systems. As one
researcher [21] said, ‘‘. . .most health monitors. . . learned to ignore
alarms triggered by their system. This is due to the excessive false
alarm rate that is typical of most systems – there is nearly an alarm
every day!”

Our research provides a methodology which, if implemented,
would allow public health officials to ‘‘tune” their biosurveillance
systems to optimally detect various threats while explicitly
accounting for organizational resource constraints available for
investigating and adjudicating signals. This allows practitioners
to focus their public health surveillance activities on locations or
diseases that pose the greatest threat at a particular point in time.
Then, as the threat changes, using the same hospitals and clinics,
the system can subsequently be tuned to optimally detect other
threats. With this approach large biosurveillance systems are an
asset.

The methodology assumes spatial independence of the data and
temporal independence of the signals. The former is achieved by
monitoring the residuals from some sort of model to account for
and remove the systematic effects present in biosurveillance data.
The assumption is that, while it is likely that raw biosurveillance
data will have spatial correlation, once the systematic components
of the data are removed the residuals will be independent. The lat-
ter is achieved by employing detection algorithms that only de-
pend on data from the current time period.

It is worth emphasizing that our focus is on how to optimally
set threshold levels for detection in an existing system, rather than
how to design a new system. This is something of a unique prob-
lem for syndromic surveillance systems, meaning that in many
other types of sensor systems, one might design a system for a spe-
cific, unchanging threat or change the location of the sensors to re-
spond to a changing threat. But in syndromic surveillance systems,
where we can think of each hospital or clinic as a fixed biosurveil-
lance ‘‘sensor” for a particular location or population, the sensor
locations cannot be changed. Part of the solution is to adjust the
way the data from the sensors are monitored.

1.1. Threshold detection methods

In this work, we define a threshold detection method as an algo-
rithm that generates a binary output, signal or no signal, given that

some function of the input or inputs exceed a pre-defined thresh-
old level. In addition, for the methods we consider, inputs come in
discrete time periods and the decision to signal or not is based only
on the most recent input or inputs. That is, the methods do not use
historical information in their signal determination; they only use
the information obtained at the current time period.

In the quality control literature, the Shewhart chart is such a
threshold detection method. At each time period a measurement
is taken and plotted on a chart. If the measurement exceeds a
pre-defined threshold a signal is generated. However, if the mea-
surement does not exceed the threshold then the process is re-
peated at the next time period, and continues to be repeated
until such time as the threshold is exceeded. See Shewhart [20]
or Montgomery [19] for additional detail. A sonar detection algo-
rithm based on signal excess is also an example of threshold detec-
tion. See Washburn [26] and references therein for a discussion.

Threshold detection methods are subject to errors, either sig-
nalling that an event of interest occurred when it did not, or failing
to signal when in fact the event of interest did occur. In classical
hypothesis testing, these errors are referred to as Type I and Type
II errors, respectively. A Type I error is a false signal and a Type II
error is a missed detection. In threshold detection, setting the
threshold requires making a trade-off between the probability of
false signals and the probability of a missed detection. A receiver
operating characteristic (or ROC) curve is a plot of the probability
of false signal versus probability of detection (one minus the prob-
ability of a missed detection) for all possible threshold levels. See
Washburn [26, Chapter 10] and the references therein for addi-
tional discussion.

1.2. Optimizing sensor systems

Optimizing a system of threshold detection-based sensors, in
the sense of maximizing the probability of detecting an event of
interest somewhere in the region being monitored by the system,
subject to a constraint on the expected number of system-wide
false signals, to the best of our knowledge, has not been done.
Washburn [26, Chapter 10.4] introduces the idea of optimizing
the threshold for a single sensor, parameterizing the problem in
terms of the cost of a missed detection and the cost of a false signal,
and seeks to minimize the average cost ‘‘per look”. He concludes
that ‘‘In practice, the consequences of the two types of error are
typically so disparate that it is difficult to measure c1 [cost of a
missed detection] and c2 [cost of a false signal] on a common scale.
For this reason, the false alarm probability is typically not formally
optimized in practice”.

Kress et al. [18] develop a methodology for optimizing the
employment of non-reactive arial sensors. In their problem the
goal is to optimize a mobile sensor’s search path in order to iden-
tify the location or locations of fixed targets with high probability.
By dividing the search region into a grid of cells, Kress et al. use a
Bayesian updating methodology combined with an optimization
model that seeks to maximize the probability of target location
subject to a constraint on the number of looks by the sensors. Their
work differs from ours in a number of important respects, includ-
ing that their sensors can have multiple looks for a target, there
may be multiple targets present, and the use of Bayesian updating
to calculate the probability of a target being present in a particular
grid cell. In contrast, in our problem the sensors are fixed, they can
only take one look per period, and at most one ‘‘event of interest”
can occur in any time period.

One active area of research is how to combine threshold rules
for systems of sensors in order to achieve high detection rates
and low false positive rates compared to the rates for individual
sensors. For example, Zhu et al. [28] consider a system of threshold
detection sensors for which they propose a centralized ‘‘threshold-
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