

Tetrahedron Letters 48 (2007) 7717-7720

Tetrahedron Letters

Cu(OTf)₂-catalyzed synthesis of imidazo[1,2-a]pyridines from α -diazoketones and 2-aminopyridines

J. S. Yaday, * B. V. Subba Reddy, Y. Gopal Rao, M. Srinivas and A. V. Narsaiah

Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 28 June 2007; revised 31 July 2007; accepted 6 August 2007 Available online 30 August 2007

Abstract— α -Diazoketones undergo smooth coupling with 2-aminopyridines in the presence of 10 mol % of copper(II) triflate to produce the corresponding 2-substituted imidazo[1,2- α]pyridines (IPs) in excellent yields with high selectivity. Rh₂(OAc)₄ is also found to be an equally effective catalyst for this transformation. © 2007 Elsevier Ltd. All rights reserved.

Imidazo[1,2-a]pyridines (IPs) have received considerable interest from the pharmaceutical industry because of their interesting therapeutic properties, ¹ including antibacterial, ² antifungal, ³ antiviral, ⁴ antiulcer, ⁵ and anti-inflammatory behavior. ⁶ They have also been characterized as selective cyclin-dependent kinase inhibitors, ⁷ calcium channel blockers, ⁸ β -amyloid formation inhibitors, ⁹ and benzodiazepine receptor agonists, ¹⁰ and they constitute a novel class of orally active nonpeptide bradykinin B₂ receptor antagonists. ¹¹ Drug formulations containing imidazo[1,2-a]pyridines such as alpidem (anxiolytic), zolpidem (hypnotic), and zolimidine (antiulcer) are currently available.

Zolimidine

Keywords: α-Diazoketones; Carbene insertion reactions; Imidazo[1,2-a]pyridines.

The ready availability, relative stability, and facile decomposition of α -diazocarbonyl compounds under thermal, photochemical, acid, base, and transition metal catalysis conditions make them useful intermediates in organic synthesis. ¹² Interestingly, α -diazoketones undergo a variety of transformations such as cyclopropanation, aziridine formation, ylide formation, C–H and X–H insertion reactions, and cyclization reactions. ¹³ These reactions are chemoselective, which allow new carbon-carbon and carbon-hetero atom bond formation under mild conditions. ¹⁴ However, there have been no reports on the coupling of α -diazoketones with 2-aminopyridines to generate biologically potent imidazo[1,2- α]pyridines (IPs).

In this Letter, we report a novel and efficient method for the synthesis of substituted imidazo[1,2-a]pyridines (IPs) via the coupling of 2-aminopyridines and α -diazoketones using a catalytic amount of copper(II) triflate under mild conditions. Accordingly, treatment of diazoacetophenone with 2-aminopyridine in the presence of 10 mol % Cu(OTf)₂ in dichloroethane (DCE) at 80 °C afforded 2-phenylimidazo[1,2-a]pyridine 3a in 94% yield (Scheme 1).

This remarkable catalytic activity of copper(II) triflate provided the incentive for further study of reactions with other α -diazocarbonyl compounds. Interestingly, various α -diazoketones reacted smoothly with several 2-aminopyridines to give the corresponding 2-aryl- and 2-alkylimidazo[1,2-a]pyridine derivatives as the products of nitrogen insertion. The *cis*-cyhalothric acid derived diazoketone also gave the nitrogen insertion product (Table 1, entry **p**, Scheme 2).

^{*}Corresponding author. Tel.: +91 40 27193030; fax: +91 40 27160512; e-mail: yadav@iict.res.in

Scheme 1.

Table 1. Cu(OTf)₂-catalyzed synthesis of imidazo[1,2-a]pyridines from α -diazoketones and 2-aminopyridines

Entry	Diazoketone	2-Aminopyridine	Product ^a	Time (h)	Yield ^b (%)
a	O_{N_2}	NH ₂		2.0	94
b	ON ₂	CH ₃	H ₃ C N	2.5	92
c	N_2	N NH ₂	N CI	2.5	91
d	H ₃ C N ₂	\mathbb{N}_{NH_2}	CH ₃	3.0	87
e	H ₃ C N ₂	$ \begin{array}{c} $	CH ₃ N—CH ₃	2.5	90
f	F N ₂	N NH_2	N F	2.5	91
g	MeO N ₂	N NH_2	OMe OMe	2.0	92
h	Ph F N ₂	N_{NH_2}	N. F	3.0	95
i	$CI \longrightarrow N_2$	N NH_2	N Ph	3.0	90
j	N_2	N N N N N N N N N N	CH ₃	2.0	91
k	O O O O O O O O O O	N NH_2	N CI	2.5	88
1	O	N NH_2	N Ph	2.5	90
m	N_2	N NH_2	N N	3.0	89
n	N_2	N N N N N N N N N N	CH ₃ N	2.5	87
0	$\begin{array}{c c} & O \\ & N_2 \\ & O $	Br NH ₂	Br N	3.0	86
p	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N_{NH_2}	CI CF ₃	2.5	90

^a All products were characterized by ¹H NMR, ¹³C NMR, IR, and mass spectroscopy. ^b Yield refers to pure products after chromatography.

Download English Version:

https://daneshyari.com/en/article/5282637

Download Persian Version:

https://daneshyari.com/article/5282637

<u>Daneshyari.com</u>