Tetrahedron Letters 48 (2007) 7717-7720 Tetrahedron Letters ## Cu(OTf)₂-catalyzed synthesis of imidazo[1,2-a]pyridines from α -diazoketones and 2-aminopyridines J. S. Yaday, * B. V. Subba Reddy, Y. Gopal Rao, M. Srinivas and A. V. Narsaiah Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad 500 007, India Received 28 June 2007; revised 31 July 2007; accepted 6 August 2007 Available online 30 August 2007 Abstract— α -Diazoketones undergo smooth coupling with 2-aminopyridines in the presence of 10 mol % of copper(II) triflate to produce the corresponding 2-substituted imidazo[1,2- α]pyridines (IPs) in excellent yields with high selectivity. Rh₂(OAc)₄ is also found to be an equally effective catalyst for this transformation. © 2007 Elsevier Ltd. All rights reserved. Imidazo[1,2-a]pyridines (IPs) have received considerable interest from the pharmaceutical industry because of their interesting therapeutic properties, ¹ including antibacterial, ² antifungal, ³ antiviral, ⁴ antiulcer, ⁵ and anti-inflammatory behavior. ⁶ They have also been characterized as selective cyclin-dependent kinase inhibitors, ⁷ calcium channel blockers, ⁸ β -amyloid formation inhibitors, ⁹ and benzodiazepine receptor agonists, ¹⁰ and they constitute a novel class of orally active nonpeptide bradykinin B₂ receptor antagonists. ¹¹ Drug formulations containing imidazo[1,2-a]pyridines such as alpidem (anxiolytic), zolpidem (hypnotic), and zolimidine (antiulcer) are currently available. ## Zolimidine *Keywords*: α-Diazoketones; Carbene insertion reactions; Imidazo[1,2-a]pyridines. The ready availability, relative stability, and facile decomposition of α -diazocarbonyl compounds under thermal, photochemical, acid, base, and transition metal catalysis conditions make them useful intermediates in organic synthesis. ¹² Interestingly, α -diazoketones undergo a variety of transformations such as cyclopropanation, aziridine formation, ylide formation, C–H and X–H insertion reactions, and cyclization reactions. ¹³ These reactions are chemoselective, which allow new carbon-carbon and carbon-hetero atom bond formation under mild conditions. ¹⁴ However, there have been no reports on the coupling of α -diazoketones with 2-aminopyridines to generate biologically potent imidazo[1,2- α]pyridines (IPs). In this Letter, we report a novel and efficient method for the synthesis of substituted imidazo[1,2-a]pyridines (IPs) via the coupling of 2-aminopyridines and α -diazoketones using a catalytic amount of copper(II) triflate under mild conditions. Accordingly, treatment of diazoacetophenone with 2-aminopyridine in the presence of 10 mol % Cu(OTf)₂ in dichloroethane (DCE) at 80 °C afforded 2-phenylimidazo[1,2-a]pyridine 3a in 94% yield (Scheme 1). This remarkable catalytic activity of copper(II) triflate provided the incentive for further study of reactions with other α -diazocarbonyl compounds. Interestingly, various α -diazoketones reacted smoothly with several 2-aminopyridines to give the corresponding 2-aryl- and 2-alkylimidazo[1,2-a]pyridine derivatives as the products of nitrogen insertion. The *cis*-cyhalothric acid derived diazoketone also gave the nitrogen insertion product (Table 1, entry **p**, Scheme 2). ^{*}Corresponding author. Tel.: +91 40 27193030; fax: +91 40 27160512; e-mail: yadav@iict.res.in Scheme 1. **Table 1.** Cu(OTf)₂-catalyzed synthesis of imidazo[1,2-a]pyridines from α -diazoketones and 2-aminopyridines | Entry | Diazoketone | 2-Aminopyridine | Product ^a | Time (h) | Yield ^b (%) | |-------|--|--|--------------------------------------|----------|------------------------| | a | O_{N_2} | NH ₂ | | 2.0 | 94 | | b | ON ₂ | CH ₃ | H ₃ C N | 2.5 | 92 | | c | N_2 | N NH ₂ | N CI | 2.5 | 91 | | d | H ₃ C N ₂ | \mathbb{N}_{NH_2} | CH ₃ | 3.0 | 87 | | e | H ₃ C N ₂ | $ \begin{array}{c} $ | CH ₃
N—CH ₃ | 2.5 | 90 | | f | F N ₂ | N NH_2 | N F | 2.5 | 91 | | g | MeO N ₂ | N NH_2 | OMe
OMe | 2.0 | 92 | | h | Ph F N ₂ | N_{NH_2} | N. F | 3.0 | 95 | | i | $CI \longrightarrow N_2$ | N NH_2 | N Ph | 3.0 | 90 | | j | N_2 | N N N N N N N N N N | CH ₃ | 2.0 | 91 | | k | O O O O O O O O O O | N NH_2 | N CI | 2.5 | 88 | | 1 | O | N NH_2 | N Ph | 2.5 | 90 | | m | N_2 | N NH_2 | N N | 3.0 | 89 | | n | N_2 | N N N N N N N N N N | CH ₃ N | 2.5 | 87 | | 0 | $\begin{array}{c c} & O \\ & N_2 \\ & O $ | Br NH ₂ | Br N | 3.0 | 86 | | p | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | N_{NH_2} | CI
CF ₃ | 2.5 | 90 | ^a All products were characterized by ¹H NMR, ¹³C NMR, IR, and mass spectroscopy. ^b Yield refers to pure products after chromatography. ## Download English Version: ## https://daneshyari.com/en/article/5282637 Download Persian Version: https://daneshyari.com/article/5282637 <u>Daneshyari.com</u>