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In this study, we propose a learning algorithm for ordinal regression problems. In most existing learning
algorithms, the threshold or location model is assumed to be the statistical model. For estimation of con-
ditional probability of labels for a given covariate vector, we extended the location model to apply ordinal
regressions. We present this learning algorithm using the squared-loss function with the location-scale
models for estimating conditional probability. We prove that the estimated conditional probability sat-
isfies the monotonicity of the distribution function. Furthermore, we have conducted numerical experi-
ments to compare these proposed methods with existing approaches. We found that, in its ability to
predict labels, our method may not have an advantage over existing approaches. However, for estimating
conditional probabilities, it does outperform the learning algorithm using location models.
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1. Introduction

In this paper, we study a learning algorithm for ordinal regres-
sion problems. Suppose that labeled training samples are observed.
Then, the main task is predicting labels of unseen samples. In ordi-
nal regressions, the labels denote preference-rankings; thus, a to-
tal order is defined over the set of labels. Usually, there are a finite
number of labels in ordinal regressions. For instance, insurance
companies attempt to rank their costumers on risk-low, average,
or high-based on each costumer’s financial status and credit his-
tory among various other factors. As a result, ordinal regressions
are regarded as an intermediate problem of classification and
regression. However, unlike regression problems, the quantitative
differences among labels do not have the absolute meaning. For
example, the quantitative differences among ‘“good,” “average,”
and “bad” depend on individual samples. Therefore, the mapping
these qualitative labels against specific quantities such as 1, 2,
and 3 may produce irrelevant results. Information in training sam-
ples only presents the frequency of labels on each covariate.

In most learning algorithms for ordinal regression problems, the
so-called location (or threshold) model is used for statistical infer-
ence. In estimation of location model parameters, variants of on-
line algorithms, support vector machines (SVMs), or Gaussian pro-
cess models are applied. A brief introduction of this algorithm is
presented in Section 2.

Although the location model is commonly used in ordinal
regression problems, it is not necessarily flexible enough to repre-
sent the complex structure of probability distributions behind the
training samples. The location model uses a fixed dispersion param-
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eter of label probability. However, in the real-world data, uncer-
tainty of labels may depend on the covariate. For example, a label
will almost certainly appear at a covariate vector, while the label
distribution may be closer to the uniform distribution at the other
covariate. The location model cannot deal with such heteroscedas-
ticity. Since label prediction requires only an estimation of the med-
ian of label probability, some existing algorithms can more
successfully predict the labels in ordinal regression problems. How-
ever, these algorithms do not perform well in estimating label prob-
ability because of the lack of flexibility in the location model.

In this paper, we study the learning algorithms for estimating
conditional probability of ordered labels, given the covariate vector.
To improve existing estimating methods, we extended the location
model to the location-scale model. This is a popular model for statis-
tical data analysis in economics and medicine [1,2]. In the location-
scale model, the scale function is incorporated to adjust the disper-
sion of the label probability. When dispersion of label probability is
not homogeneous, the location-scale model is useful for fitting ob-
served samples. In our numerical studies, we have shown that, for
estimation of conditional probability, location-scale models outper-
form location models. On the other hand, for label prediction of the
benchmark dataset, location models perform better than location-
scale models. For estimation of conditional probability, we use
the observed information to capture the whole structure of proba-
bility distribution; hence, the flexible model with appropriate reg-
ularization is well suited for such statistical analysis. On the other
hand, for label prediction, we must only estimate the median of
the label distribution. In SVM-based algorithms using the location
model, analysis of training samples focuses on estimating this med-
ian. As a result, prediction accuracy is high, although these ap-
proaches fail to provide reliable estimations of label probability.
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The paper is organized as follows: In Section 2, we formulate
the ordinal regression problems, and introduce some of the exist-
ing approaches. Statistical models for ordinal regressions are con-
sidered in section 3. In Section 4, we investigate loss functions
for probability estimation. In Section 5-7, we propose the learning
algorithm, conduct numerical studies, and present our conclusions.

Throughout the paper, we have used the following notations: Let
X be the set of input vectors and Y = {1, ...,K} be the set of output
labels. The knownorder 1 < 2 < --- < K is defined as ranking for the
set of labels. The conditional probability distribution of labelsy € Y
given X € X is expressed as Pr(Y < y|x), and let u be a probability
measure defined on X. The training samples are denoted as
(X1, Y1), .-, (Xn,¥n) € X x Y. Let V' be {1,...,K—1} =Y\ {K} for
the simplicity of notation. The indicator function [[A]] is defined as

1 Ais true,
[1A) = {O otherwise. @

2. Brief introduction of existing learning methods

In ordinal regression problems, the main purpose is to predict
the label y € Y of given input X € X based on the training samples
(X1,¥1)s- -, (Xn,¥) € X x Y. There are a number of works on ordi-
nal regression problems [3-14]. Some approaches come from the
statistical community, and the others come from the machine
learning community. In this section, we introduce some of the
existing methods.

A popular statistical model for label prediction in ordinal
regression is called the threshold model. In this model, the label pre-
diction y for x € X is given as:

y(x) = min{y € b, > f(x)}. (2)

The thresholds by,...,bx € R should satisfy the monotonicity,
bi < by <--- < bg_1 < by := co. The K-th threshold by is fixed to oo
for convenience. We need to estimate the function f: X — R and
the thresholds bq,b,,...,bx 1 for label prediction. To remove a
redundant degree of freedom in the threshold model, we impose
a constraint, for example f(Xo) = O for a fixed xo € X.

The perceptron ranking (PRank) algorithm is an on-line algo-
rithm using the model f(x) = (w, X), where (w, X) is the inner prod-
uct of w and x [4]. The absolute loss function is defined over the set
of labels. In the PRank algorithm, parameters are updated so as to
reduce the accumulate loss 3°7_, |y, — |, where j, is the prediction
of y, at the t-th round of the on-line process. Note that the label y is
regarded as a numerical value in PRank algorithm. In summary,
PRank is an on-line algorithm that minimizes empirical approxi-
mation of the expected absolute loss E[|ly — y(x)|] with respect to
the population distribution. It is widely accepted that the mini-
mum solution for absolute loss provides the median of the random
variable. Therefore, what PRank estimates is the median value of
the labels under the population distribution.

In some recent works on ordinal regression problems, the support
vector machine (SVM) [15,16] has been applied. SVM is one of the
most popular learning methods for binary classification problems.
The purpose of binary classification is prediction of the output binary
label for a given input x based on the training samples (xi,z1),
..., (Xn,Zn) € X x {—1,1}. SVM with the linear kernel provides the
estimator in the form of b — (w, x). Prediction of a binary label is gi-
ven by the sign of b— (w,x) for the given x, ie, y(X)=
2[[b = (w,x)]] — 1. The estimator is given as the optimal solution of

Hv}llbn %WTW+ Cgéh(zi(b - <W7 Xi>))-, (3)

where ¢,(z) = max{0, 1 — z} is the hinge loss function and C is a po-
sitive constant adjusting the trade-off between regularization and

fitting terms. Let Pr(Z = 1|x) be the conditional probability of the
binary label. Suppose that the decision boundary {x|Pr(Z=
1|x) = 1/2} c x is realized by the specified model. Then, as the
sample size tends to infinity, the estimator will satisfy the
following,

Pr(Z=1[X)>1/2=b> (W.x;), Pr(Z=1|x)<1/2=b<(W,X), (4)

with high probability.

In ordinal regressions, we need to estimate the function f(x)
and thresholds by, y € V. [7] proposed SVM for ordinal regression
problems, and elucidated their method from the perspective of
binary classification problems by introducing the concept referred
to as label reduction [9]. Let y® be the reduced label of y € Y at
k € V' defined as

1 y<k

1 oysk ®)

v =2y <k -1 {
The reduced label is obtained by splitting the label at order k. The
reduced label of the training sample y; is denoted as yfk). For a fixed
k €)', the loss function to estimate the decision boundary of
Pr(y® = 1|x) is given by (3) with z; = y¥’. In the threshold model,
there are K — 1 thresholds bq,...,bx_; to be estimated. Thus, the
loss function summed up over k € )7 is used for the parameter
estimation:

SWW 4 CY Y b~ (xw))). 6)

ke i=1

As a statistical model of f(x), a reproducing kernel Hilbert space
(RKHS) is frequently used to fit the regression function to a compli-
cated data structure [16]. When sample size tends to infinity, the
sign of b, —f(x) for given x is expected to be the sign of
Pr(Y < kjx) — 1/2, since the equality Pr(Y® =1[x) = Pr(Y < k|x)
holds. As a result, the prediction (2) will provide an approximate va-
lue of label y(x) satisfying the following:

PR(Y < §(0) — 1) < 3 < Pr(Y < J()[x) (7)
Therefore, the predicted label provides an approximation of the
median value of the labels. In a strict sense, the above expression
will not hold even in the limit of sample size, since the loss function
(6) leads estimation bias in general. Intuitively, however, in both
PRank and SVM-based learning methods, the prediction target is
considered to be the median of the labels under the population
distribution.

[9] proposed a general framework for ordinal regressions with
the reduction technique. [8] studied “order learning,”, proposing
a mapping from label to binary, which is the same method as that
used by [9]. In their algorithms, an extended SVM is applied for la-
bel prediction under the threshold models.

3. Statistical models for ordinal regression problems

We shall now compare the two statistical models for ordinal
regression problems: the location models and the location-scale
models.

3.1. Location models

Let F: R —[0,1] be a distribution function on R satisfying
F(0)=1/2, and Z be a random variable obeying F(z). Then,
f(x)+Z has the distribution function Pr(f(x)+Z<z) =
F(z—f(x)). For given thresholds by < b, <--- < bk 1 < bx = o0,
the random variable Y is defined as

Y = min{y € Y|b, > f(x) + Z}. (8)
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