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a b s t r a c t

The purpose of this study is to incorporate prior knowledge into a boosting algorithm. Existing
approaches require additional samples that represent the prior knowledge. Moreover, in order to adjust
the balance between the information in training samples and the prior knowledge in the data domain,
one needs to repeat the boosting algorithm with a different regularization parameter. These properties
lead to costly computation. In this paper, we propose a boosting algorithm with prior knowledge that
avoids computational issues. In our method, the mixture distribution of the estimator and prior knowl-
edge is considered. We describe numerical experiments showing the effectiveness of our approach.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Since the 1990s, statistical learning methods have been highly
developed. Boosting [11] which is a learning algorithm for a
classification task is one of the most significant achievements in
the community of machine learning. By applying boosting to a
so-called weak learner such as decision trees, one can obtain accu-
rate classifiers or decision functions for classification tasks. In other
words, boosting is regarded as a meta-learning algorithm. Adaboost
[11] is one of the most efficient implementations of a boosting
algorithm. Friedman et al. [12] have pointed out that the boosting
algorithm is derived from a coordinate descent method [21] for loss
functions. Following the approach indicated by Friedman et al. [12],
one can derive a boosting algorithm from any loss function under
mild assumptions. The negative log-likelihood loss function leads
to the Logitboost algorithm [11], which is regarded as the maxi-
mum likelihood estimator implemented by the boosting. To im-
prove the generalization ability of Adaboost, the Modest Adaboost
has been proposed [28]. As the other approach to improve the
generalization ability, FloatBoost [20] has been proposed, in which
the least significant weak learner is removed. In addition, for the
semi-supervised learning, SemiBoost [22] and MixtBoost [13] have
been proposed. The generalization of the boosting algorithm has
been studied in [5,7,23] and other works referred to in these
articles. Theoretical analysis of the generalization ability of the
boosting algorithm is also investigated in [4,25,29,30]. In this paper,
we mainly use Logitboost algorithm.

In many learning problems, some information on the data
domain may be available in addition to the observed training sam-
ples. An example is the prior distribution in Bayes inference. In the
standard form, however, boosting does not allow for the direct
incorporation of prior knowledge. Schapire et al. [26] have studied
a boosting algorithm with prior knowledge. In their work, prior
knowledge is incorporated into the loss function of the boosting
algorithm. Then, the standard boosting algorithm is applied to
the loss function involving prior knowledge. Boosting with prior
knowledge has been applied to call classification problems in
which human-crafted knowledge is available to compensate for
the lack of data. Schapire et al. [26] reported that boosting with
prior knowledge consistently improves the naive boosting method.

As for the other approach, recursive Bayes learning is also appli-
cable to incorporate prior knowledge [8]. When a linear model is
used under a normal distribution, the computation of recursive
Bayes learning is efficiently conducted for the online setup. Other-
wise, the naive application of Bayes learning entails high computa-
tional cost in terms of integrating the probability distribution over
the parameter space. In Bayesian inference, some assumption on
prior knowledge is required in order to reduce the computational
cost. In variational Bayes method [3], the conditional independence
among parameters is an important assumption. Hence, one needs
to modify the provided prior knowledge in order to apply Bayes
methods to large classification or regression tasks. On the other
hand, in boosting with prior knowledge [26], one does not need
to modify the given prior knowledge. The Bayes methods, however,
can deal with many kind of statistical models, while the model
used in boosting is restricted to the linear combination of basis
functions. We need to select appropriate learning methods
depending on the purpose of the data analysis.
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In this paper, we propose a new learning method for incorporat-
ing prior knowledge into boosting. In this framework, a significant
issue is to estimate the value of the regularization parameter that
determines the balance between the information in the training
data and the prior knowledge of the data domain. Schapire et al.
[26] empirically determine the regularization parameter because
the validation method incurs high computational cost. By using
our approach, the computation cost of estimation is reduced com-
pared with [26], because in our algorithm, the learning phase by
boosting and the incorporation of prior knowledge are separated.
This is the main advantage of our method. Another property of
our method is the application of error correcting output coding
(ECOC) in multiclass classification problems. In the learning meth-
od in Schapire et al. [26], the binary reduction technique is used in
order to transform a multiclass label to a binary label. The training
data produced by the binary reduction technique are typically
unbalanced when the number of class labels is large. The unbal-
anced training data often prevent the learning algorithm from
reducing the training error rate. Moreover, the ECOC method does
not need additional training samples, while in [26] additional
training samples with weights are introduced to represent the
prior knowledge. Our approach has a great advantage from the
viewpoint of computational cost in comparison with existing
methods. We show that the ECOC method improves the learning
efficiency in the training phase.

We define some notations and fix the problem setup. Assume
that we are given the training samples,

ðx1; y1Þ; . . . ; ðxn; ynÞ 2 X � Y; ð1Þ

where X is the input domain and Y :¼ f1;2; . . . ;Kg is the set of class
labels. In binary classification problems, the set of labels is defined
as Y ¼ f�1;þ1g instead of {1,2}. The input xi could have some
information on the features of the object i, and the label denotes
the category to which the input is classified. For example, xi denotes
the ith document in the text data sets and yi denotes the tag or the
category of the text xi. The main task of learning is to predict the
label y for the given input x that may not appear in the training data.
The samples in the prediction phase are called test samples or test
data. We assume that all of the training and test samples are
selected independently and identically from some probability
distribution p(x,y) on X � Y. Let p(x) be the marginal probability
distribution on X and p(yjx) be the conditional probability of the
label y 2 Y given x 2 X . For the prediction of unseen labels, the
so-called decision function is often used. The decision function is
a real-valued function f(x,y) defined on X � Y, and the label of x
is predicted by the label ŷ such that

ŷ ¼ argmaxy2Y f ðx; yÞ; ð2Þ

where the tie is broken in some way, e.g., by a random choice
among the maximizers. Building a decision function that achieves
high prediction accuracy is the main task of classification problems.

2. Boosting for classification problems

In this section, we introduce the boosting algorithm. In this
paper, we focus on the boosting method for classification prob-
lems. There are many methods for predicting labels based on
observations, for example, the nearest-neighbor method and the
support vector machine. See [15] for details of each method. The
main concept of boosting is to boost the so-called weak learner
or weak classifier to a highly accurate classifier. In other words,
boosting is regarded as a meta-learning algorithm. Standard learn-
ing algorithms, such as decision stumps [15] or rpart [27] are avail-
able as the weak learner to build the decision function f(x,y). Note
that we use the weak learner as a black-box subroutine.

Friedman et al. [12] have pointed out that the boosting algo-
rithm is derived from the coordinate descent method [21]. Their
work has also clarified that boosting has the potential to estimate
the conditional probability p(yjx). Indeed, there is a correspon-
dence between decision functions and conditional probabilities.
Hence, once the decision function is estimated, one can obtain an
estimator of the conditional probability p(yjx). This relation con-
nects the boosting and the standard statistical tools such as the
maximum likelihood estimator.

We illustrate the boosting algorithm for the estimation of the
decision function f(x,y). Here f(x,y) is supposed to have a particular
form, namely, the linear sum of the base functions hðx; yÞ 2 H,
where H is a set of base functions. For example, H consists of all
the decision functions obtained from the decision tree algorithm.
In practice, H is implicitly defined, that is, it may be all possible
outputs of a learning algorithm. Suppose that f is represented as
the linear sum of base functions such that

f ðx; yÞ ¼
XT

t¼1

athtðx; yÞ; at 2 R; ht 2 Hðt ¼ 1; . . . ; TÞ: ð3Þ

In the following, Logitboost algorithm [5,12] is introduced. Though
Adaboost [11] is the most popular boosting algorithm, we use Log-
itboost algorithm to deal with the noisy data. We refer Section 10.6
in [15] to explain the superiority of Logitboost in the estimation
based on noisy data:

At any point in the training process the exponential criterion
concentrates much more influence on observations with large
negative margins. Binomial deviance concentrates relatively
less influence on such observations, more evenly spreading
the influence among all of the data. It is therefore far more
robust in noisy settings where the Bayes error rate is not close
to zero.

Large weight on a small portion of samples will make the esti-
mation unstable, and thus, Logitboost will be superior to Adaboost
as explained in the above quotation.

Let us define L(f) as the loss function

Lðf Þ ¼
Xn

i¼1

�f ðxi; yiÞ þ log
X
z2Y

expðf ðxi; zÞÞ
( )

: ð4Þ

Eq. (4) is derived from the statistical model of conditional probability

qðyjx; f Þ ¼ expff ðx; yÞgP
z2Y

expff ðx; zÞg : ð5Þ

Indeed, the loss function (4) is represented as

Lðf Þ ¼ �
Xn

i¼1

log qðyijxi; f Þ; ð6Þ

which is the negative log-likelihood of the statistical model (5).
We are concerned with finding the decision function that mini-

mizes L(f). For this purpose, one can use the coordinate descent
method to update the decision function f to f þ ah; ða 2 R;h 2 H),
such that L(f + ah) 6 L(f) holds. The Taylor expansion of L(f + ah)
abound a = 0 yields

Lðf þ ahÞ ¼ Lðf Þ þ a � Eðh; f Þ þ Oða2Þ; ð7Þ

in which Eðh; f Þ is defined as the derivative of L(f) to the direction of
h,

Eðh; f Þ ¼ @

@a
Lðf þ ahÞja¼0: ð8Þ

For a base function h such that Eðh; f Þ < 0, there exists a positive
coefficient a > 0 satisfying the inequality L(f + a h) < L(f). Boosting

T. Kanamori, T. Takenouchi / Information Fusion 14 (2013) 208–219 209



Download English Version:

https://daneshyari.com/en/article/528293

Download Persian Version:

https://daneshyari.com/article/528293

Daneshyari.com

https://daneshyari.com/en/article/528293
https://daneshyari.com/article/528293
https://daneshyari.com

