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a b s t r a c t 

The aggregation of rankings is a long-standing problem that consists of, given a profile of rankings, ob- 

taining the single ranking that best represents the nature of this given profile. Under the name of metric 

rationalisation of ranking rules, it has been proven that most ranking rules can be characterized as min- 

imizing the distance to a consensus state for some appropriate distance function. In this paper, we pro- 

pose to consider monometrics instead of distance functions. Although these concepts are closely related, 

monometrics better capture the nature of the problem, as the purpose of a monometric is to preserve a 

given betweenness relation. This is obviously only meaningful when an interesting betweenness relation 

is fixed, for instance, the one based on reversals in rankings proposed by Kemeny. In this way, ranking 

rules can be characterized in terms of a consensus state and a monometric. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Aggregation of rankings has been a relevant matter of study 

since the eighteenth century. It consists of, given a list of rank- 

ings (from here on called profile of rankings), obtaining the sin- 

gle ranking that best represents the nature of this given profile. 

This ranking is considered the ‘winner’ by the aggregation method 

(from here on called ranking rule). The aggregation of rankings has 

been addressed in many scientific disciplines, including medicine 

[1] , consumer preference analysis [2] , computer science [3] , man- 

agement science [4] and social choice theory [5,6] . Nevertheless, 

due to the natural interpretation of the aggregation of rankings 

as a voting procedure, social choice theory is considered the most 

prominent field of application. 

Many ranking rules have been proposed since the eighteenth 

century, when the works of Rousseau [7] , Borda [8] and Condorcet 

[9] laid the foundations of social choice theory. In a recent pa- 

per, Meskanen and Nurmi [10] analysed the notion of consensus 

state (or simply consensus). In general, a profile is said to be in a 

consensus state when determining a winning ranking is obvious. 

A trivial consensus state is unanimity [11] , where each voter has 

the exact same preferences. Another slightly more involved one, is 

the existence of a Condorcet ranking [9] . Several authors, such as 

Nitzan [12] , Lerer and Nitzan [13] , Campbell and Nitzan [14] and 

Meskanen and Nurmi [10,15] , have advocated that ranking rules 
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can be characterized as minimizing the distance to a consensus 

state for some appropriate distance function. This characterization 

is known as metric rationalisation of ranking rules. A well-known 

method of this type is that of Kemeny [11] , where the Kendall 

(tau) distance [16] between rankings and the unanimous consen- 

sus state are considered. Other relevant proposals are due to Bog- 

art [17,18] or Cook and Seiford [19,20] , where different distance 

functions are considered; or due to Meskanen and Nurmi [10,21] , 

Rademaker and De Baets [22] or Pérez-Fernández et al. [23] , where 

different consensus states are considered [10,15,24–26] . 

Perhaps due to the inaccurate term ‘closeness’ used to define 

the problem, where the ‘closest’ profile of rankings in the required 

consensus state is searched, researchers have focused too strongly 

on the notion of distance function. Nevertheless, the nature of the 

problem requires the use of another closely related type of func- 

tion. Distance functions are actually too restrictive. Note that, in- 

stead of looking for the ‘closest’ profile of rankings in the required 

consensus state, we are interested in minimizing the cost (loss) of 

changing the given profile into another one in the required consen- 

sus state. As the converse is not required, there is no need to ask 

for symmetry. In addition, this cost might not be (sub-)additive (for 

instance when considering a penalized distance function); hence, 

there is also no need to ask for the triangle inequality. On the other 

hand, a notion of betweenness between profiles of rankings may 

describe the conditions under which a profile should be ‘closer’ to 

the original one than another profile. After all, if a profile R 

′ is in 

between the original profile R and another profile R 

′′ , then the 

cost of changing R into R 

′ should be lower than that of chang- 

ing R into R 

′′ . A function satisfying the latter axiom and, at the 
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same time, the non-negativity and coincidence axioms, is called a 

monometric. These monometrics will extend the analysis of rank- 

ing rules from the point of view of searching for a consensus state. 

The rest of the paper is organized as follows. Section 2 is de- 

voted to the analysis of monometrics. In Section 3 , the calculation 

of the cost is presented as an optimization problem. A procedure 

for hierarchically combining monometrics is proposed in Section 4 . 

The characterization of ranking rules in terms of a consensus state 

and a monometric is addressed in Section 5 . We end with some 

conclusions and open problems in Section 6 . 

2. Monometrics 

In this section, we introduce the concept of a monometric, 

which is closely related to that of a distance function or metric. 

Like a distance function, a monometric satisfies the axioms of non- 

negativity and coincidence, but a monometric requires compatibil- 

ity with a given betweenness relation [27] and does not impose 

symmetry nor the triangle inequality. 

2.1. General case 

The notion of distance function or metric is a well-known con- 

cept in mathematics. 

Definition 1. A function d : A × A → R is called a distance function 

(on the set A ) if it satisfies the following four properties: 

(i) Non-negativity : for any a, b ∈ A , it holds that 

d(a, b) ≥ 0 . 

(ii) Coincidence : for any a, b ∈ A , it holds that 

d(a, b) = 0 ⇔ a = b . 

(iii) Symmetry : for any a, b ∈ A , it holds that 

d(a, b) = d(b, a ) . 

(iv) Triangle inequality : for any a, b, c ∈ A , it holds that 

d(a, c) ≤ d(a, b) + d(b, c) . 

A betweenness relation is a ternary relation, introduced by 

Pasch [27] and further developed by Huntington and Kline [28] , 

that describes when an element is in between two other ones. In 

what follows, we adhere to the formal relaxed definition given by 

Pitcher and Smiley [29] , requiring a minimal set of axioms. Actu- 

ally, they also proposed additional axioms concerning transitivity. 

Further additional axioms have been proposed in literature [27,28] , 

[30] . 

Definition 2. A ternary relation R on a set A is called a between- 

ness relation if it satisfies the following two properties: 

(i) Symmetry in the end points : for any a, b, c ∈ A , it holds 

that 

(a, b, c) ∈ R ⇔ (c, b, a ) ∈ R . 

(ii) Closure : for any a, b, c ∈ A , it holds that (
(a, b, c) ∈ R ∧ (a, c, b) ∈ R 

)
⇔ b = c . 

The formula ‘( a, b, c ) ∈ R ’ is read as ‘ b is in between a and c ’ 

and is denoted as [ a, b, c ] when no confusion is possible. 

Note that although no transitivity axioms are required in this 

paper, they are necessary conditions in order to guarantee the ex- 

istence of an order relation ≤ that agrees with R , i.e. for which it 

holds that ( x, y, z ) ∈ R if and only if x ≤ y ≤ z or z ≤ y ≤ x . For 

further details about the relationship between order relations and 

betweenness relations, we refer to [30] . 

After fixing a betweenness relation, monometrics can be intro- 

duced, which are functions satisfying the non-negativity and coin- 

cidence axioms of a distance function, while preserving the given 

betweenness relation. 

Definition 3. Let A and B be two sets such that A ⊆B and let R be 

a betweenness relation on B . A function M : A × B → R is called a 

monometric (w.r.t. R ) if it satisfies the following three properties: 

(i) Non-negativity : for any a ∈ A and any b ∈ B , it holds that 

M(a, b) ≥ 0 . 

(ii) Coincidence : for any a ∈ A and any b ∈ B , it holds that 

M(a, b) = 0 ⇔ a = b . 

(iii) Compatibility : for any a ∈ A and any b, c ∈ B such that [ a, 

b, c ], it holds that 

M(a, b) ≤ M(a, c) . 

In case the sets A and B coincide, we say that M is a monomet- 

ric on A . 

For any a ∈ A and any b ∈ B, M ( a, b ) is called the cost of chang- 

ing a into b . The set A is called the set of observable elements and 

the set B is called the set of reachable elements. It may be the 

case that, after changing an observable element into a reachable 

one, we can no longer recognize whether or not the latter element 

belongs to the set of observable elements (see [23] for an example 

of non-characterizable set of reachable elements). 

Note that, by considering an appropriate betweenness relation, 

every distance function can be considered a monometric. In the 

following example, two generic betweenness relations are pro- 

posed w.r.t. which every distance function is a monometric. 

Proposition 1. A distance function d : A × A → R (on the set A) is a 

monometric w.r.t. both of the following betweenness relations: 

(i) R 1 = { (a, b, c) ∈ A 

3 | a = b ∨ b = c} ; 
(ii) R 2 = { (a, b, c) ∈ A 

3 | d(a, c) = d(a, b) + d(b, c) } . 
Proof. We first prove that both R 1 and R 2 satisfy the two axioms 

of a betweenness relation (on A ). Symmetry in the end points: for 

any a, b, c ∈ A , it holds that 

(a, b, c) ∈ R 1 ⇔ (a = b) ∨ (b = c) 

⇔ (c = b) ∨ (b = a ) 

⇔ (c, b, a ) ∈ R 1 

and 

(a, b, c) ∈ R 2 ⇔ d(a, c) = d(a, b) + d(b, c) 

⇔ d(c, a ) = d(b, a ) + d(c, b) 

⇔ (c, b, a ) ∈ R 2 , 

due to the symmetry of d . Closure: for any a, b, c ∈ A , it holds 

that (
(a, b, c) ∈ R 1 

)
∧ 

(
(a, c, b) ∈ R 1 

)
⇔ (a = b ∨ b = c) ∧ (a = c ∨ b = c) 

⇔ b = c 

and (
(a, b, c) ∈ R 2 

)
∧ 

(
(a, c, b) ∈ R 2 

)
⇔ d(a, c) = d(a, b) + d(b, c) ∧ d(a, b) = d(a, c) + d(c, b) 

⇔ d(b, c) = 0 

⇔ b = c. 

Next, we prove that d satisfies the three axioms of a monometric 

(on A ) w.r.t. both R 1 and R 2 . The non-negativity and coincidence 
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