

Tetrahedron Letters 47 (2006) 83-88

Tetrahedron Letters

Palladium-mediated synthesis of 5-substituted 4-alkynylthieno[2,3-c]pyran-7-ones[☆]

Sirisilla Raju,^{a,c} Venkateswara Rao Batchu,^b Nalivela Kumara Swamy,^b R. Vasu Dev,^b J. Moses Babu,^b P. Rajender Kumar,^a K. Mukkanti^c and Manojit Pal^{b,*}

^aCustom Pharmaceutical Services and Dr. Reddy's Laboratories Ltd, Bollaram Road, Miyapur, Hyderabad 500 049, India ^bDiscovery Research, Dr. Reddy's Laboratories Ltd, Bollaram Road, Miyapur, Hyderabad 500 049, India ^cChemistry Division, Institute of Science and Technology, JNT University, Kukatpally, Hyderabad 500 072, India

> Received 18 August 2005; revised 17 October 2005; accepted 26 October 2005 Available online 14 November 2005

Abstract—We describe here, the first palladium-mediated tandem C–C bond forming reaction between 3-iodothiophene-2-carbox-ylic acid and terminal alkynes to afford the unexpected 5-substituted 4-alkynylthieno[2,3-c]pyran-7-ones in good yields. © 2005 Elsevier Ltd. All rights reserved.

Isocoumarins^{1a} are of considerable synthetic and pharmacological interest because of their wide range of activities^{1b-d} such as antifungal, antimicrobial, phytotoxic and other effects. The angiogenesis inhibitor NM-3, 1e which belongs to this class is presently undergoing Phase-I clinical trials. On the other hand, the thiophene moiety is common in many bioactive agents and drugs^{2a} and is considered as a bioisostere of the benzene ring.^{2a} Thus, one can anticipate that replacing the benzene ring of isocoumarin with a thiophene ring would afford compounds (i.e., thieno[2,3-c]pyran-7-ones) of potential pharmacological interest. 2b However, thienopyranones are a different class of heterocycles and only a few methods are known for their synthesis.^{2c-e} Moreover, the synthesis of 4-alkynylthieno[2,3-c]pyran-7-ones has not been reported thus far. These derivatives are attractive due to the synthetic potential of C-4 alkynyl fragments for use in library construction. Therefore, to enrich the chemistry of thiophenes and more importantly, to synthesize a library of isocoumarins³ for biological screening we became interested in the synthesis of thieno[2,3-c]pyran-7-ones.

Among the many methods reported for the synthesis of isocoumarins one widely used process is the Sonogash-

Keywords: 4-Alkynylthieno[2,3-c]pyran-7-one; Palladium catalyst; Terminal alkynes; 3-Iodothiophene-2-carboxylic acid.

ira-type coupling followed by electrophilic or transition metal mediated cyclization of the resulting alkynes possessing a carboxylate or an equivalent group in proximity to the triple bond.⁴ Attractive features of this process include its versatility and functional group tolerance. Thus, isocoumarins have been prepared by reacting oiodobenzoic acid with terminal alkynes in the presence of Pd(PPh₃)₄, Et₃N and a stoichiometric amount of ZnCl₂.^{5a} The use of ZnCl₂ in place of CuI^{5b,c} was found to be responsible for the predominant formation of isocoumarins over phthalides. Nevertheless, we have noted that 3-iodothiophene-2-carboxylic acid (1) reacts smoothly with terminal alkynes in the presence of PdCl₂(PPh₃)₂-Et₃N-CuI as a catalyst system affording 5-substituted 4-alkynylthieno[2,3-c]pyran-7-ones (2) in good yields (Scheme 1). To the best of our knowledge this demonstration represents the first example of a mild, single-step, Pd-catalyzed approach to substituted thieno[2,3-c]pyran-7-ones.⁶

Scheme 1. Pd-catalyzed reaction of 3-iodothiophene-2-carboxylic acid **1** with terminal alkynes.

[★]DRL Publication Number 496.

^{*} Corresponding author. Tel.: +91 40 2304 5439; fax: +91 40 2304 5438/5007; e-mail: manojitpal@drreddys.com

 $\textbf{Table 1.} \ \ \textbf{Pd-mediated synthesis of 5-substituted 4-alkynylthieno} [2,3-c] pyran-7-ones^a$

Entry	Alkyne (HC≡C−R)	Solvent; time (h)	Product (2)	Yield (%)	
				2	3
			HO CH ₃		
			CH₃		
1	−C(CH ₃) ₂ OH	EtOH; 12	HO CH ₃	50	24
1	-C(C113)2O11	EtOH, 12	CH ₃	50	24
			s		
			Ö 2a		
2 3	$-C(CH_3)_2OH$	1,4-dioxane; 12	2a	30	0
3 4	-C(CH ₃) ₂ OH -C(CH ₃) ₂ OH	DMA; 12 DMF; 8	2a 2a	55 80	0
•	C(C113)2011	Divil , o	он 	00	Ü
5	$-(CH_2)_2OH$	DMF; 12	OH	53	0
			S		
			0		
			2b OH		
6	$-(CH_2)_3OH$	DMF; 12		61	0
			ОН		
			§ , O		
			2c		
			HO		
7	-CH(OH)CH ₃	DMF; 10	OH	82	0
	· / 3	,	S O		
			0		
			2d		
8	$-(CH_2)_3CH_3$	DMF; 12		65	15
			s		
			Ö 2e		
			~~~		
9	-(CH ₂ ) ₅ CH ₃	DMF; 12		62	35
J	−(C112)5CΠ3	DIVII [*] , 12		02	33
			s		
			<b>2f</b> O		

## Download English Version:

## https://daneshyari.com/en/article/5283573

Download Persian Version:

https://daneshyari.com/article/5283573

<u>Daneshyari.com</u>