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a b s t r a c t

The iterated-corrector PHD (IC-PHD) filter, which is the most commonly used multi-sensor PHD filter,

is affected by the sensor order and the probability of detection. To address this problem, the product

multi-sensor PHD (PM-PHD) filter, a modified version of the IC-PHD filter, is proposed. The update for-

mulation of the PM-PHD filter consists of a likelihood function and a modified coefficient. Although the

coefficient improves the performance of the PM-PHD filter, it still has some drawbacks. In this paper, two

improvements on the coefficient are proposed. (1) The coefficient is the quotient of two infinite sums

which are computational intractable. We prove that some terms in the infinite sums can be eliminated,

and thus the infinite sums can be approximated by the sum of finite terms. (2) Since the coefficient is a

scalar quantity, it mainly focuses on maintaining the magnitudes of the posterior PHD and the number

of targets. It may lead to an inaccurate state estimation in some situations. In the Gaussian mixture im-

plementation of the PM-PHD filter, a cardinality modified method is proposed to reassign the weight of

Gaussian components and modify the posterior PHD. The advantages of these two methods are verified

by simulations and experiments.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Multi-target tracking (MTT) aims to estimate the motion state

of targets from the measurement information. The traditional MTT

algorithms, which are mainly designed on the data association, in-

clude multiple hypotheses tracking (MHT) [1,2], joint probabilis-

tic data association (JPDA) [3] and their variants [4–9]. With the

number of targets and the clutter intensity increasing, a high com-

putation burden caused by data association reduces the real-time

performances of these above algorithms. In recent years, Mahler

proposed an effective approach for the MTT problem, named the

random finite set (RFS) theory [10]. The number of targets and the

dimension of state space are random variables for the reason that

the number of targets may vary with time. Thus, the state model

and the observation model can be represented by random finite

set, and many derivative algorithms [11–18] are proposed on the

basis of the RFS theory. Among them, the probability hypothesis

density (PHD) filter [14], the cardinalized probability hypothesis

density (CPHD) filter [15,16] and the multi-target multi-Bernoulli

(MeMBer) filter [10] are the most commonly used methods. Unlike

the PHD filter, the CPHD filter propagates the multi-target poste-

rior density and the posterior cardinality distribution simultane-

ously. Although the CPHD filter is more accurate than the PHD fil-
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ter in the cardinality estimation, the CPHD filter has a higher com-

plexity O(m3 · n), where m and n are the numbers of measure-

ments and targets. To reduce the complexity of the CPHD filter, a

linear-complexity CPHD (LC-CPHD) filter [17] is proposed. Unlike

the PHD filter and the CPHD filter, the MeMBer filter [10] has a

cardinality bias. To deal with this problem, a cardinality-balanced

MeMBer (CBMeMBer) filter [18] is proposed. Recently, Vo and Vo

introduced an RFS with distinct labels, named the label RFS [19].

Furthermore, they proposed two algorithms depending on the la-

bel RFS, the generalized labeled multi-Bernoulli (GLMB) filter [20]

and the labeled multi-Bernoulli (LMB) filter [21]. These two filters

are the generalizations of the MeMBer filter without the cardinal-

ity bias, which can estimate the target tracks under low probabil-

ity of detection and high clutter density scenarios. The above two

filters have been applied in visual tracking [22], extended target

tracking [23] and sensor control [24]. Although the RFS algorithms

achieve well performance, they need to obey the assumptions that

the birth intensity, the clutter intensity and the probability of de-

tection are known a priori. To address this drawback, many re-

search studies [25–27] have been carried out.

With the development of sensor technologies, considerable

attention has been focused on multi-sensor solution [28] for both

nonmilitary and military applications, such as robotics [29], image

processing [30] and target tracking [31]. For the MTT problem,

the multi-sensor solution combines the information obtained from

different sensors to improve estimates of target state and velocity.

Compared with single-sensor target tracking, multi-sensor target
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tracking achieves a better performance on the detection, the

stability and the field of view of tracking system. In [14], Mahler

proposed a simple and feasible multi-sensor algorithm, called the

Iterated-corrector PHD (IC-PHD) filter. In the IC-PHD filter, the

updated PHD of each sensor is the predicted PHD of the next one,

and the updated PHD of the last sensor is considered as tracking

results. In [32], it is pointed out that the IC-PHD filter is affected

by the sensor order and sensitive to the probability of detection.

The product multi-sensor PHD (PM-PHD) filter [33], an improved

version of the IC-PHD filter, is proposed to deal with this problem.

With an additional modified coefficient, the PM-PHD filter is more

accurate than the IC-PHD filter for estimating the cardinality. How-

ever, the coefficient is the quotient of two infinite sums, and it is

incapable of computing or approximating the two infinite sums. In

this regard, an approximate solution for the infinite sums is pro-

posed in this paper. Furthermore, a heuristic method is proposed

to handle the problems caused by the modified coefficient. In the

GM implementation of the PM-PHD filter, the heuristic method

reassigns the weights of Gaussian components and modifies the

posterior intensity. Different parameters, such as the probability of

detection, the clutter intensity and the observation noise, are cho-

sen to test the performance of the proposed algorithm. Simulation

results show that both the cardinality estimation and the state

estimation are improved by the heuristic method.

The rest of this paper is organized as follows. The RFS and the

PHD filter are described in Section 2. The PM-PHD filter is intro-

duced in Section 3. The approximate solution for the infinite sums

and the cardinality modified method are presented in Sections 4

and 5, respectively. Simulation results are performed in Section 6.

Finally, Section 7 gives the conclusions.

2. Background

In the multi-target motion model, the state set and the ob-

servation set can be represented by Xk = {x1, . . . , xNk
} and Zk =

{z1, . . . , zMk
}, respectively. Here, Nk and Mk denote the numbers of

targets and measurements at time k.

Given a state RFS Xk−1 at time k − 1, the state RFS Xk at time k

can be expressed by

Xk =
( ⋃

ξ∈Xk−1

Sk|k−1(ξ )

)
∪
( ⋃

ξ∈Xk−1

Bk|k−1(ξ )

)
∪ �k (1)

where Sk|k−1(ξ ) represents the RFS of targets which still survive

at time k from ξ ∈ Xk−1. Bk|k−1(ξ ) represents the RFS of targets

spawned by ξ ∈ Xk−1. �k represents the RFS of new targets which

appear instantly at time k.

Given a state RFS Xk at time k, the observation RFS Zk can be

expressed by

Zk = Kk ∪
(⋃

ξ∈Xk

�k(ξ )

)
(2)

where Kk represents the observation set of clutter, and �(ξ) rep-

resents the observation set generated by the state ξ.

Let Dk|k−1(x) and Dk(x) denote the PHDs of the predicted den-

sity pk|k−1(x) and the posterior density pk(x) at time k, respec-

tively. Then the posterior intensity can be derived by the PHD

recursion,

Dk|k−1(x) =
∫

pS,k(ξ ) fk|k−1(x|ξ )Dk−1(ξ )dξ

+
∫

bk|k−1(x|ξ )Dk−1(ξ )dξ + γk(x) (3)

Dk|k (x) =
[
1 − pD,k(x)

]
Dk|k−1(x)

+
∑
z∈Zk

pD,k(x)gk(z|x)Dk|k−1(x)

κk(z) + ∫
pD,k(ξ )gk(z|ξ )Dk|k−1(ξ )dξ

(4)

where γ k( · ) denotes the PHD of the birth RFS �k at time k,

bk|k−1(·|ξ ) denotes the PHD of the spawned RFS Bk|k−1(ξ ) at time

k, and κk( · ) denotes the intensity of the clutter RFS Kk. pS, k( · )

and pD, k( · ) are the probabilities of survival and detection, respec-

tively. fk|k−1(·|ξ ) and gk( · | · ) are the state transition function and

the observation likelihood function, respectively.

3. Product multi-sensor PHD filter

Suppose that there are s sensors. The measurement set of the

ith sensor is denoted by Zi
k

= {z1, . . . , z i
m
}, i = 1, . . . , s, where

i
m is

the number of measurements.

The PM-PHD filter can be written as

1...s

D P,k|k (x) = KZ1
k
,...,Zs

k
· L1

Z1
k
(x) · · · Ls

Zs
k
(x) · 1...s

D k|k−1 (x) (5)

Li
Zi

k
(x) = 1 − pi

D,k(x) +
∑
z∈Zi

k

pi
D,k

(x)Lz(x)

κ i
k
(z) + D k|k−1

[
pi

D,k
, Lz

] (6)

Lz(x) = g(z|x ) (7)

1...s

D k|k−1

[
pi

D,kLz

]
=
∫

pi
D,k(ξ )Lz(ξ )D k|k−1(ξ )dξ . (8)

Eq. (5) can be divided into two parts: the pseudo-likelihoods

L1
Z1

k
(x) · · · Ls

Zs
k
(x), and the scalar quantity K

Z1
k
,...,Zs

k
which is used to

modify the cardinality estimation. Here, K
Z1

k
,...,Zs

k
= φ

v1
k|k···vs

k|k
, vi

k|k =
1...s
s k|k−1[Li

Zi
k

], and φ is computed by:

φ =
∑

n≥0 �̂1
Z1

k

(n + 1) · · · �̂s
Zs

k
(n + 1) · e−θ · θn

n!∑
j≥0 �̂1

Z1
k

( j) · · · �̂s
Zs

k
( j) · e−θ · θ j

j!

(9)

θ = 1...s

N
k|k−1

· η, η =
1...s
s k|k−1

[
L1

Z1
k
· · · Ls

Zs
k

]
v1

k|k · · · vs
k|k

(10)

�̂i
Zi

k

(n) =
min

(
n,

i
m

)
∑
l=0

l! · Cl
n · 1...s

s k|k−1

[
1 − pi

D,k

]n−l
σ̂ i

l

(
Zi

k

)
(11)

σ̂ i
l

(
Zi

k

)
= σ i

m,l

⎛
⎝ 1...s

s k|k−1

[
pi

D,k
Lz1

]
κ i

k
(z1)

, . . . ,

1...s
s k|k−1

[
pi

D,k
Lz i

m

]
κ i

k

(
z i

m

)
⎞
⎠ (12)

1...s
s k|k−1 [h] =

∫
h(ξ ) · 1...s

s k|k−1 (ξ )dξ (13)

1...s
s k|k−1 (x) =

1...s

D k|k−1 (x)

1...s

N k|k−1

. (14)

In the above equations, the superscript i denotes the sensor in-

dex; parameter with the superscript 1, . . . , s indicates that this pa-

rameter is determined by all sensors.



Download English Version:

https://daneshyari.com/en/article/528384

Download Persian Version:

https://daneshyari.com/article/528384

Daneshyari.com

https://daneshyari.com/en/article/528384
https://daneshyari.com/article/528384
https://daneshyari.com

