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a b s t r a c t 

This overview paper describes the particle methods developed for the implementation of the class of 

Bayes filters formulated using the random finite set formalism. It is primarily intended for the readership 

already familiar with the particle methods in the context of the standard Bayes filter. The focus in on 

the Bernoulli particle filter, the probability hypothesis density (PHD) particle filter and the generalised 

labelled multi-Bernoulli (GLMB) particle filter. The performance of the described filters is demonstrated 

in the context of bearings-only target tracking application. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In many areas of science and engineering there is a need to 

infer the behaviour of a stochastic dynamic system, using its par- 

tial and indirect observations. By combining (typically nonlinear) 

mathematical models of system evolution and sensor measure- 

ments, one can formulate the optimal sequential estimator in the 

Bayesian framework. This estimator, commonly referred to as the 

Bayes-optimal (or simply Bayes) filter, provides a recursive formula 

for the complete probabilistic characterisation of the dynamic sys- 

tem in the form of a time-varying posterior probability density of 

its state [1] . 

For most nonlinear/non-Gaussian formulations, analytic closed- 

from solutions of the Bayes filter are intractable. Practical solutions, 

therefore, need to be based on approximations. Particle filters are 

a class of Monte Carlo simulation based methods which can pro- 

vide very accurate approximations of the Bayes filter. Despite being 

computationally expensive, particle filters have become universally 

popular, primarily due to their accuracy, relatively simple imple- 

mentation and the ever increasing speed of computers. As a result 

of their widespread application, a few good tutorials and books 

have been published on the subject of particle filters [2–7] . 

Particle filters have been introduced and traditionally ap- 

plied as the approximate solutions of the standard Bayes filter, 

formulated during the 1960s [1] under the following assumptions: 
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(i) the stochastic dynamic system (object, phenomenon) is perma- 

nently active (or present); (ii) observations are noisy, but collected 

with perfect detection (i.e. there are no false or missed detections). 

All the aforementioned tutorials and books discuss the particle fil- 

ters in this context only. However, in many practical applications, 

one may have to deal with multiple stochastic dynamic systems 

(objects), which can be simultaneously active (present), and which 

can randomly switch on and off (appear/disappear). In addition, 

perfect detection using surveillance sensors (e.g. radar, sonar, video 

cameras) is rarely possible [8] . Until recently, particle filters have 

been applied to this class of problems using a clever combination 

of Bayesian estimation theory with ad-hoc logic. However, the re- 

cent advances in Bayesian estimation using random finite set (RFS) 

models [9] resulted in elegant and rigorous mathematical formula- 

tions of the Bayes-optimal and principled Bayes-suboptimal filters, 

applicable to multiple interacting on/off switching systems with 

possibly imperfect detection of measurements. 

This overview paper describes the particle methods developed 

for the implementation of the new class of RFS-Bayes filters. It 

is primarily intended for the readership already familiar with the 

particle methods in the context of the standard Bayes filter. One 

of the most popular and convincing applications of particle fil- 

ters, versus standard approximation methods, such as the Extended 

Kalman filter (EKF) [10] and unscented Kalman filter (UKF) [11] , 

has been for bearings-only tracking problems [5, chap. 6] . Hence, 

this application has been chosen to demonstrate throughout the 

paper different RFS-Bayes particle filters and their performance. 

The paper is organised as follows. Section 2 reviews the particle 

method for the standard Bayes filter. The elements of mathematics 
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Notation 

X the single object state space 

F(X ) the multiple object state space 

L the space of labels 

x the state of a single object (a random vector) 

X the state of multiple-objects (a random finite set, 

RFS) 

X the state of multiple labelled objects (a labelled 

RFS) 

Z measurement space 

z a measurement of a single object (a random vector) 

Z a detector output measurement (a RFS) 

k discrete-time index 

p ( x ) a probability density function (PDF) of x ∈ X 

˜ p (x , � ) a PDF of a labelled random vector (x , � ) ∈ X × L 

f ( X ) a PDF of an RFS variable X ∈ F(X ) 
˜ f (X ) a PDF of a labelled RFS variable X ∈ (F(X ) × L ) 

for random finite set models are presented in Section 3 . The par- 

ticle method for the RFS Bayes-optimal filter and its special case, 

the Bernoulli filter, are discussed in Section 4 . A multi-target par- 

ticle filter, referred to as the PHD particle filter, is presented in 

Section 5 . The labelled RFS Bayes tracking filters implemented us- 

ing the particle method are discussed in Section 6 . The summary 

and pointers to advanced research topics are given in Section 7 . 

2. Particle methods for the standard Bayes filter 

In order to familiarise with the notation, let us start with a 

quick review of the standard Bayes filter and the corresponding 

particle methods. The problem is by no means simple and it is still 

an active and highly relevant research topic. 

2.1. Problem formulation and the standard Bayes filter 

Suppose the state vector x k ∈ X provides the complete specifi- 

cation of the state of a dynamic system (object, phenomenon) at 

time t k . Here X ⊆ R 

n x is the state space, while k is the discrete- 

time index corresponding to t k . Let us adopt the discrete-time 

additive-noise formulation, specified by two equations: 

x k = f k −1 (x k −1 ) + v k −1 , (1) 

z k = h k (x k ) + w k , (2) 

referred to as the dynamics equation and the measurement equation , 

respectively. Function f k −1 : R 

n x → R 

n x in (1) is a nonlinear transi- 

tion function defining the temporal evolution of the state vector as 

a first-order Markov process. Random disturbances v k ∈ R 

n x , also 

known as process noise, are assumed to be independent identically 

distributed (IID) according to the probability density function (PDF) 

p v . Function h k : R 

n x → R 

n z in (2) defines the relationship between 

the state x k and the measurement z k ∈ Z, where Z ⊆ R 

n z is the 

measurement space. Random disturbances w k ∈ R 

n z , also known 

as measurement noise, are assumed independent of v k , and mod- 

elled as an IID process with the PDF p w 

. Typically n z < n x , giving 

rise to the term partial observations of the system. 

In the formulation specified by (1) and (2) , the functions f k 
and h k , the probability distributions p v and p w 

, and the PDF of 

the state vector at initial time k = 0 , (i.e. p 0 ( x 0 )), are all assumed 

known. Eqs. (1) and (2) effectively define two probability func- 

tions: the transitional density πk | k −1 (x k | x k −1 ) = p v (x k − f k −1 (x k −1 )) 

and the likelihood function g k (z k | x k ) = p w 

( z k − h k (x k ) ) . The prob- 

lem is to compute recursively the posterior PDF of the state, de- 

noted as p k | k ( x k | z 1: k ) at discrete-time k , where the notation z 1: k 

stands for the sequence z 1 , z 2 , ���, z k . 

The solution is usually presented as a two step procedure. Let 

p k −1 | k −1 (x k −1 | z 1: k −1 ) denote the posterior PDF at k − 1 . The first 

step predicts the density of the state to time k via the Chapman–

Kolmogorov equation [1] : 

p k | k −1 (x k | z 1: k −1 )= 

∫ 
πk | k −1 (x k | x 

′ ) p(x 

′ | z 1: k −1 ) dx 

′ . (3) 

The second step applies Bayes rule to update p(x k | z 1: k −1 ) using 

measurement z k : 

p k | k (x k | z 1: k ) = 

g k (z k | x k ) p k | k −1 (x k | z 1: k −1 ) ∫ 
g k (z k | x ) p k | k −1 (x | z 1: k −1 ) dx 

. (4) 

Knowing the posterior p k | k ( x k | z 1: k ), one can compute a point esti- 

mate of the state ˆ x k (e.g. as the mean or the mode of the posterior) 

and a confidence (or credible) interval. 

The closed-form analytic solution to (3) and (4) can be found 

only in some special cases. One important case is when f k and h k 

are linear functions and PDFs p v , p w 

and p 0 are Gaussian; the solu- 

tion in this case is the Kalman filter. In general, however, stochastic 

filtering via (3) and (4) can be solved only numerically. Many al- 

gorithms have been proposed for this purpose, including analytic 

approximations (e.g. Extended Kalman filter and its variants), grid- 

based methods (where the posterior PDF is evaluated at a finite 

and fixed set of points), Gaussian sum filters (where the posterior 

PDF is approximated by a Gaussian mixture), unscented transforms 

[11] and particle filters [5,12] . 

2.2. A primer on the particle method 

Suppose the posterior density at discrete-time k − 1 is approx- 

imated by a set of random samples (particles) { w 

(i ) 
k −1 

, x (i ) 
k −1 

} 1 ≤i ≤N , 

where x (i ) 
k −1 

is the state of particle i and w 

(i ) 
k −1 

is its weight. The 

weights are normalised, that is 
∑ N 

i =1 w 

(i ) 
k −1 

= 1 . This approxima- 

tion of the posterior improves as N → ∞ . Given { w 

(i ) 
k −1 

, x (i ) 
k −1 

} 1 ≤i ≤N 

and using the measurement z k at time k , the key question is 

how to form the particle approximation of the posterior at k , i.e. 

p k | k ( x k | z 1: k ), denoted { w 

(i ) 
k 

, x (i ) 
k 

} 1 ≤i ≤N . 

The computation of the weights and particles at time k is 

based on the concept of importance sampling [13] . Let us intro- 

duce a proposal or importance density q k (x k | x k −1 , z k ) , whose sup- 

port contains the support of the posterior PDF at time k . Then the 

(preliminary) particles at time k are drawn from the importance 

density: 

˜ x 

(i ) 
k 

∼ q k (x k | x 

(i ) 
k −1 

, z k ) , (5) 

whose weights are computed as follows: 

˜ w 

(i ) 
k 

= w 

(i ) 
k −1 

g k (z k | ̃ x 

(i ) 
k 

) πk | k −1 ( ̃ x 

(i ) 
k 

| x 

(i ) 
k −1 

) 

q k ( ̃ x 

(i ) 
k 

| x 

(i ) 
k −1 

, z k ) 
(6) 

w 

(i ) 
k 

= 

˜ w 

(i ) 
k ∑ N 

j=1 ˜ w 

( j) 
k 

(7) 

for i = 1 , . . . , N. This recursive procedure starts at time k = 0 by 

sampling N times from the initial PDF p 0 . 

The described particle method, also known as sequential impor- 

tance sampling (SIS), inevitably fails after many iterations, because 

all particle weights, except a few, become zero (a poor approxi- 

mation of the posterior PDF due to particle degeneracy). The col- 

lapse of the SIS scheme can be prevented by resampling the parti- 

cles. The resampling step chooses N particles from { w 

(i ) 
k 

, ̃  x (i ) 
k 

} 1 ≤i ≤N , 

where the selection of particles is based on their weights: the 
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