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We introduce a robust framework for learning and fusing of orientation appearance models based on both tex-
ture and depth information for rigid object tracking. Our framework fuses data obtained from a standard visual
camera and dense depth maps obtained by low-cost consumer depth cameras such as the Kinect. To combine
these two completely different modalities, we propose to use features that do not depend on the data represen-
tation: angles. More specifically, our framework combines image gradient orientations as extracted from inten-
sity images with the directions of surface normals computed from dense depth fields. We propose to capture
the correlations between the obtained orientation appearance models using a fusion approach motivated by
the original Active Appearance Models (AAMs). To incorporate these features in a learning framework, we use
a robust kernel based on the Euler representation of angles which does not require off-line training, and can
be efficiently implemented online. The robustness of learning from orientation appearance models is presented
both theoretically and experimentally in this work. This kernel enables us to cope with gross measurement
errors, missing data as well as other typical problems such as illumination changes and occlusions. By combining
the proposed models with a particle filter, the proposed framework was used for performing 2D plus 3D rigid
object tracking, achieving robust performance in very difficult tracking scenarios including extreme pose
variations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Depth or range cameras have been developed for several years and
are available to researchers for certain applications for about a decade.
With the development of 3D capturing equipment, it has become faster
and easier to obtain 3D shape and 2D texture information to represent a
real 3D object in a scene. Subspace learning techniques have beenwide-
ly used for fusing the two modalities. These techniques have provided
valuable tools for understanding and capturing the intrinsic non-linear
structure of visual data encountered in many important machine vision
problems. At the same time, there has been a substantially increasing in-
terest in related applications such as appearance-based object recogni-
tion and rigid object tracking. A fundamental problem of the majority

of subspace learning techniques (both linear and non-linear) for
appearance-based object representation is that they are not robust. In
this paper, we are extending existed subspace techniques in a robust
framework for learning and fusing of orientation appearance models
based on both texture and depth information.

Outliers are common not only because of illumination changes, oc-
clusions or cast shadows but also because the depthmeasurements pro-
vided by an depth camera could be very noisy and the obtained depth
maps usually contain “holes” or missing parts. It should be mentioned
here that there are several cases that should be considered as “partial
occlusions”, like extreme facial expressions, or when a hand/object
covers partially the tracked object. Fig. 1 depicts a few examples for all
these common cases by using Kinect for obtaining both texture and
depth information. In contrary to the texture information, there are
cases of partially object occlusions where there are no significant differ-
ences in the depth information when a hand/object touches an object,
as the raw Kinect depth data is of low resolution with high noise levels.
Furthermore, as it is shown in Fig. 1, there are many cases when the
estimation of the nose tip in the 3D space is very possible to fail,
such as cases of extreme facial expressions or when a hand covers par-
tially the object by touching it. This is a problem for allmethods for both
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3D tracking/pose estimation and 3D face recognition such as [1,2] that
are based on accurate nose tip estimation. In [2], the use of random
regression forests for real time head pose estimation from high quality
range scans, is introduced. Note that subspace learning for visual track-
ing requires robustness, efficiency and online adaptation. This com-
bined problem has been rarely studied in literature. For example, in
[3], the subspace is efficiently learned online using incremental ‘22

norm PCA [4]. Nevertheless, the ‘2
2 norm enjoys optimality properties

only when image noise is independent and identically distributed
(i.i.d.) Gaussian; for data corrupted by outliers, the estimated sub-
space can be arbitrarily skewed. On the other hand, robust
reformulations of PCA [5–7] typically cannot be extended for effi-
cient online learning.

3D shape information can be used to produce algorithms which are
able to handle many challenges such as inaccurate face alignment, pose
variations,measurementnoise,missing data, facial expressions and par-
tial occlusion. Many different approaches were proposed for dealing
with the aforementioned problems [8,9,1,10–12]. Early approaches,
such as [1], use specific face regions that are not affected by the presence
of facial deformations caused by facial expressions, such as the nose and
the area around it. Subspace learning algorithms for 3D mesh normals,
such as Principal Component Analysis (PCA), employ low-dimensional
representation of surfaces [13–16]. In its simplest form, PCA on surface
normals has been applied on the concatenation of normal coordinates
[14]. One attempt to exploit the special structure of normals (i.e., that
lie on a sphere) was conducted in [15].

Fig. 1. Common examples of partial occluded faces, in both cropped texture and depth information by using Kinect. First row: a hand is touching the face. In contrary to the texture infor-
mation, there are cases of partially object occlusions where there are no significant differences in the depth information when a hand/object touches the tracked object, as the raw Kinect
depth data is of low resolutionwith highnoise levels, Second row: depth information only for the face regions that are depicted in thefirst row, aswell as their triangulatedmesheswithout
anymesh filtering, Third row: a hand, which is far from the face, is covering a face part. In this case, there aremissing face parts inside the parallelepiped containing the face, Fourth row: in
general an object is covering a face part, and Fifth row: cases where the nose tip estimation in the 3D space is not performing well, thus making a 3D tracking/pose estimation procedure,
which is based on this estimation, to fail.
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