

Tetrahedron Letters 48 (2007) 1281-1285

Tetrahedron Letters

A novel synthesis of aryl tethered imidazo[4,5-b]pyrazin-2-ones through in situ ring construction and contraction[☆]

Ramendra Pratap, ^a Abhijeet Deb Roy, ^b Raja Roy ^b and Vishnu Ji Ram^{a,*}

^aMedicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow 226 001, India ^bDivision of SAIF, Central Drug Research Institute, Lucknow 226 001, India

Received 28 August 2006; revised 29 November 2006; accepted 7 December 2006

This Letter is dedicated to Professor Wolfgang Pfleiderer, University of Konstanz Germany, on the occasion of his 80th birthday

Abstract—An innovative synthesis of aryl tethered 1,3-dimethylimidazo[4,5-b]pyrazin-2-ones **4** and **6** has been delineated through base catalyzed ring transformation of 6-aryl-4-(piperidin-1-yl)-2*H*-pyran-2-one-3-carbonitriles **1** and methyl 6-aryl-4-methylsulfan-yl-2*H*-pyran-2-one-3-carboxylates **5** with 7-acetyl-1,3-dimethyllumazine **2** with subsequent ring contraction of the fused pyrimidine to an imidazole ring. An additional product, methyl [6-(1,3-dimethyl-2-oxo-2,3-dihydro-1*H*-imidazo[4,5-b]pyrazin-5-yl)-4-thiophen-2-ylpyran-2-ylidene]acetate **8b**, was also isolated from the reaction of **5** and **2**, as a minor constituent. © 2006 Elsevier Ltd. All rights reserved.

The imidazo[4,5-*b*]pyrazine ring system is present as a substructure in several marine natural products such as dibromophakellstatin¹ **I**, phakellin² **II** and palau'-amine³ **III** with diverse pharmacological activities, including antibacterial,⁴ immunosuppressant,⁵ antineoplastic,⁶ antifungal,⁷ antihypertensive,⁸ diuretic, bronchodilatory,⁹ cardiac-stimulatory⁹ and pesticidal¹⁰ (Fig. 1).

A comprehensive literature survey showed that the chemistry of the imidazo[4,5-*b*]pyrazine ring system has not been explored extensively. It was first prepared¹¹ through the condensation of 2,3-diaminopyrazine with an acid chloride or by fusion with urea. Acylation of the diamine followed by ring closure in hot diphenyl ether or heating 2,3-diaminopyrazine with an acid are other methods which has also been reported.¹⁰ A Curtius reaction of 3-aminopyrazine-2-carboxylic acid azide proved to be a versatile route⁹ for the synthesis of 1,3-dihydro-2*H*-imidazo[4,5-*b*]pyrazin-2-ones. An alternative route has also been developed¹² through

Figure 1. Structures of dibromophakellstatin **I**, phakellin **II** and palau'amine **III** and 1,3-dimethylimidazo[4,5-*b*]pyrazin-2-one **IV**.

Keywords: Imidazo[4,5-b]pyrazine; 2H-Pyran-2-ones; Ring transformation.

the condensation–cyclization of 2-amino-3-pyrazine-carboxylic acid with hydroxylamine in moderate yield. This ring system has also been prepared from the reaction of 2,5-diamino-3,6-dicyanopyrazine with alkyl isocyanate, but in poor yield. ¹³ Further, nucleosides of this class of compounds have been prepared ¹⁴ through

[☆] CDRI Communication No. 7067.

^{*}Corresponding author. Tel.: +91 522 2612411; fax: +91 522 2623405; e-mail: vjiram@yahoo.com

the condensation of a 4,5-diaminoimidazole nucleoside with 1,2-diketones.

We report here a concise synthesis of 5-aryl-1,3-dimethylimidazo[4,5-b]pyrazin-2-ones **4** and **6** through

Table 1. Synthesis of imidazo[4,5-b]pyrazin-2-ones 4

Compound	Structure	Time (h)	Yield (%)
4 a	CN CH ₃ N N CH ₃ CH ₃ CH ₃	2	79
4b	CI CN CH ₃ CN CH ₃ CH ₃	2.5	81
4c	Br CN CH ₃ CH ₃ CH ₃	2.5	73
4d	H ₃ C CN CH ₃ CH ₃ CH ₃ CH ₃	2	83
4e	H ₃ CO CN CH ₃ CH ₃ CH ₃	2.5	87
4f	CN CH ₃ CH ₃ CH ₃ CH ₃	2	75
4 g	CN CH ₃ CH ₃ CH ₃	2	79

the base catalyzed ring transformation of 1 and 5 with 7-acetyl-1,3-dimethyllumazine 2 with subsequent contraction of the pyrimidine to an imidazole ring.

6-Aryl-4-(piperidin-1-yl)-2*H*-pyran-2-one-3-carbonitriles **1** and methyl 6-aryl-4-methylsulfanyl-2*H*-pyran-2-one-3-carboxylates **5** were used for the ring transformation with 7-acetyl-1,3-dimethyllumazine **2**. The former were obtained¹⁵ in two steps by stirring an equimolar mixture of aryl methyl ketones and methyl 2-cyano-3,3-dimethylthioacrylate in the presence of powdered KOH in DMSO, followed by amination with piperidine in ethanol at reflux. Lactones **5** were prepared¹⁵ analogously from the reaction of aryl methyl ketones and methyl 2-carbomethoxy-3,3-dimethylthioacrylate. 7-Acetyl-1,3-dimethyllumazine **2** was prepared by acylation of 1,3-dimethyllumazine. ¹⁶

The reaction of 6-aryl-4-(piperidin-1-yl)-2*H*-pyran-2one-3-carbonitriles 1 with 7-acetyl-1,3-dimethyllumazine 2 in the presence of powdered KOH in dry DMF afforded 5-aryl-1,3-dimethylimidazo[4,5-b]pyrazin-2-ones 4 in good yields. Analogously, the reaction of 5 with 7acetyl-1,3-dimethyllumazine under identical reaction conditions produced a mixture of two products, 5-biaryl-1,3-dimethylimidazo[4,5-b]pyrazin-2-ones 6 and 4-aryl-[6-(1,3-dimethyl-2-oxo-2,3-dihydro-1*H*imidazo[4,5-b]pyrazin-5-yl)pyran-2-ylidene]acetate The yields and reaction conditions for these reactions are presented in Tables 1 and 2. The structures of the final compounds 4, 6 and 8b were established unequivocally using one- and two-dimensional NMR experiments (see Supplementary data). Possibly, the first stage of the reaction is the conversion of the acetyl to a biaryl¹⁷ to form 7-biaryl-1,3-dimethyllumazine 3 as an intermediate with subsequent ring contraction in a second step to

Table 2. Synthesis of imidazo[4,5-b]pyrazin-2-ones 6 and 8b

Compound	Structure	Time (min)	Yield (%)
6a	SCH ₃ COOCH ₃ CH ₃ CH ₃ CH ₃ CH ₃	45	39
6b	SCH ₃ COOCH ₃ CH ₃ CH ₃ CH ₃ CH ₃	50	35
8b	H_3C $O = N$ N N N N N N N N N	50	14

Download English Version:

https://daneshyari.com/en/article/5284158

Download Persian Version:

https://daneshyari.com/article/5284158

<u>Daneshyari.com</u>