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a b s t r a c t

Blind motion deblurring from a single image has always been a challenging problem. This paper proposes
a blind image motion deblurring method which adopts L0-regularized priors both in kernel and latent
image estimation. A sparse and noiseless kernel and reliable intermediate latent images are generated
with this prior constraint. An alternating minimization method is adopted to ensure that latent image
and kernel estimation converge at an acceptable time. The proposed method is easy to implement since
it does not require any complex filtering strategies to select salient edges which are critical to the explicit
salient edges selection methods. The experimental results demonstrate that the proposed method is
superior because of the better performance when compared with other state-of-the-art methods and
the encouraging results obtained on some challenging examples.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Single image blind deblurring has been extensively discussed in
recent years due to its wide range of applications. Such as facial
deblur, Liao and Lin [1] decomposed an intrinsic sharp face image
into the eigen-face subspace and adopted a Gaussian prior to reg-
ularizing the estimated intrinsic face image. Zhang et al. [2] used
the Joint Restoration and Recognition method, which combines
restoration and recognition within sparse learning. Pan et al. [3]
proposed a face image deblurring method which is based on the
contour of faces. While in medical imaging field, the Computed
Tomography (CT) medical images are degraded by blurring due
to many reasons, like the low resolution of the imaging system,
data loss in acquisition and noise. Recently, many deblurring meth-
ods have been proposed to better visualize miniature-sized fea-
tures of the CT image. Jiang et al. [4] proposed a deblurring
method for spiral CT image based on edge signal-to-noise ratio,
which improved the identification of cochlear CT details signifi-
cantly. Wang et al. [5] made an improvement to Jiang et al. [4]
by using the Wiener filter, which improved the image quality
and accelerated the speed of deblurring algorithm. Alameen and
Sulong [6] proposed a fast deblurring method for CT medical
images using a novel kernel set. Gou et al. [7] proposed a low-
rank decomposition-based method for CT image sequence restora-
tion, which achieved higher contrast, sharper organ boundaries

and richer soft tissue structure information, compared with exist-
ing CT image restoration methods.

This paper focuses on motion deblurring problem, and the pro-
cess of motion blur is generally modeled as a latent image con-
volved with a motion blur kernel as follow

y ¼ x � kþ r ð1Þ
where y denotes blurred image, k is blur kernel, latent image x indi-
cates the image we would have captured if the camera had
remained perfectly still, � represents the convolution operation
and r is image noise. Our purpose is to reconstruct x from ywithout
specific knowledge of k.

Previous single-image blind motion deblurring methods [8–10]
work partly due to the use of various latent image and kernel pri-
ors. Cho and Lee [10] and Xu and Jia [11] used Gaussian prior in
their methods, but this prior cannot keep the sparsity of the esti-
mated kernel and the image structures, which leads to noisy and
dense estimated results. Since natural image gradients do not sat-
isfy the Gaussian distribution but the heavy-tailed distribution
[12], Fergus et al. [8] developed a method that incorporates zero-
mean mixture of Gaussian for deblurring, Shan et al. [9] proposed
a parametric model to approximate the heavy-tailed distribution of
natural image gradients, Krishnan and Fergus [13] and Levin et al.
[14] both adopted Hyper-Laplacian prior in estimation.

Image structure edges play an important role in kernel estima-
tion. The strategy combining shock filter with filter methods such
as bilateral filter has been extensively adopted in [10,11,15–17].
However, not all edges are helpful in kernel refinement [10,11].
Xu and Jia [11] proposed an effective mask computation algorithm
to select useful edges adaptively in kernel estimation. Recently, a
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novel L0-regularized [18] constraint method has been adopted in
natural [9,18] and text motion deblurring [19], since L0-
regularized prior has a good interpretation for sparsity of natural
image gradients and also a good effect on noise and ring-artifact
suppression.

When it comes to the motion blur, the kernel k indicates the
trace of sensor and shows great sparseness. Some methods [9,20]
used kernel constraint kkk1, which could preserve the sparse prop-
erty of kernel effectively. However, it sometimes induced noise
[15]. Most kernel estimation models [10,11] adopted quadratic

kernel constraint kkk22 which could help to reduce kernel noise
and enable fast kernel estimation by using Fast Fourier Transform
(FFT). However, this prior constraint often leads to a dense kernel.
Xiao et al. [21] developed a stochastic optimization method, which
does not require the explicit computation of the gradient of the
objective function and uses only efficient local evaluation of the
objective. Thus, new priors can be implemented and tested very
quickly by using their method. Since kernel size is an important
parameter in image deblurring approaches, and it is often manu-
ally selected. Liu et al. [22] proposed an approach for automatically
estimating the kernel bound of the blurred images, which focuses
on kernel size selecting.

Inspired by this, we propose a natural image motion deblurring
model based on L0-regularized prior and introduces an efficient
optimization algorithm. Firstly, we adopt an L0-regularized prior
in latent image estimation, therefore complex filter or explicit
edges selection methods are no more needed in our method. Sec-
ondly, we introduce an L0-regularized constraint in kernel estima-
tion, which could ensure estimated kernel sparse and continuous.
Thirdly, we apply an alternating minimization method [23] that
makes latent image and kernel estimation converge at an accept-
able time. Finally, we employ a standard Total Variation non-
blind deblurring method to guarantee a detailed restored image.

The rest of this paper is organized as follows. Section 2 demon-
strates the proposed method and describes the implementation in
detail. Section 3 shows the experimental results and compared
with other state-of-the-art methods. Conclusions are drawn in
Section 4.

2. The proposed method

Previous works [8–10,20] demonstrate that regularization term
is important in both kernel and latent image estimation. Krishnan
et al. [20] performed kernel estimation on the high frequencies of
the image and they used differential filters rh ¼ ½1;�1� and
rv ¼ ½1;�1�T to generate a high-frequency version
ry ¼ ðrhy;rvyÞT . They modeled the deblurring problem as

min
x;k

wkrx � k�ryk22 þ krxk1=krxk22 þukkk1 ð2Þ

where w and u are weights, kkk1 is L1 norm of k;rx is the latent

image x in the high-frequency space, rx ¼ ðrhx;rvxÞT ; krxk1 and

krxk22 are L1 and L2 norm for rx, respectively. In this model,

krxk1=krxk22 function would produce multiple local minima, and
this function is non-convex thus very hard to be optimized directly.
kkk1 norm has a good sparse representation, but it would result in a
noisy kernel. Pan and Su [24] introduced a sparse krxk0 regulariza-

tion and applied a Gaussian prior kkk22 in their model

min
x;k
krx � k�ryk22 þ ckrxk0 þukkk22 ð3Þ

where c is weight, kkk22 is L2 norm of k; krxk0 is the L0 norm of rx
that counts the number of non-zero values of rx. kkk22 has a good
noise suppression effect and the quadratic format makes the kernel

estimate faster by using FFT. However, the Gaussian prior kkk22 used
in this model would result in a dense kernel.

Summarizing the preceding discussions, various constraint
functions have been proposed to approximate krxk0 and kkk0
which have a good natural interpretation for the sparsity of image
gradients and kernel intensities, respectively. However, an L0 regu-
larization term would result in a non-convex problem which is
very difficult to be optimized. Pan et al. [19] introduced a highly
efficient alternating minimization method which could effectively
solve this problem. We introduce the krxk0 and the kkk0 con-
straints into the deblurring model as

min
x;k
kx � k� yk22 þ ckrxk0 þukkk0 ð4Þ

The optimization method proposed by Pan et al. [19] is applied to
solve the model, which works by solving the following two sub-
problems alternately

min
x
kx � k� yk22 þ ckrxk0 ð5Þ

and

min
k
kx � k� yk22 þukkk0 ð6Þ

In Fig. 1, the kernel in Fig. 1(a) is estimated by using the model
Eq. (2) which is employed by Krishnan et al. [20]. Kernel in Fig. 1(c)
is obtained by using the proposed model Eq. (4) where a sparse
kkk0 prior is adopted. Kernel in Fig. 1(b) corresponds to model

Eq. (3) which can be easily testified by changing kkk0 to kkk22 in

Fig. 1. Comparisons of results with different kernel priors. The kernel shown in (a) is estimated by using the model Eq. (2) that is employed by Krishnan et al. [20], and the
kernel shown in (b) and (c) are obtained by using model Eqs. (3) and (4), respectively.
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