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a b s t r a c t

A robust spatial-domain based super-resolution mosaicking algorithm is proposed. This technique
incorporates a mosaicking algorithm, and a super-resolution reconstruction algorithm. The main contri-
bution of this paper is the development of a super-resolution algorithm using a Huber Norm-based max-
imum likelihood (ML) estimation in combination with an adaptive directional Huber-Markov
regularization. Another contribution is the development of a no-reference performance metric based
on reciprocal singular value curve for quantitative evaluation of the proposed algorithm. Along with
the above-mentioned metric, five other performance measurement metrics are used to assess the
efficiency of the algorithm. The performance of this algorithm is compared with the performances of
two different algorithms: the Tikhonov regularization-based and the total variation (TV)-based
super-resolution mosaicking algorithms. Results show that the proposed algorithm outperforms the
other two techniques in terms of lowest amount of blur and noise in the output.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

High-resolution images are desired in many practical applica-
tions, including satellite imaging, medical image processing, target
recognition, video surveillance, etc. The immediate solution to
achieve high-resolution image is to increase the detector density
by reducing their size or to increase the sensor area. However,
these involve manufacturing challenges and is prohibitively expen-
sive in certain applications. Consequently, the use of signal pro-
cessing techniques to obtain an image with improved spatial
resolution from multiple low-resolution (LR) images of the same
scene becomes an attractive proposition. This approach, known
as super-resolution (SR) reconstruction, is well documented in
the literature. Such reconstruction primarily relies on the ability
to estimate the relative displacement between the sequential
low-resolution frames to recover details that are finer than the
sampling grid [1]. Additionally, the possible effects causing blur
and noise in the low-resolution frames are eliminated in this
reconstruction procedure. One obvious advantage of this approach
is that existing low-resolution imaging systems can still be utilized
[2]. Image mosaicking, in similar fashion, is the stitching of two or

more correlated images of the same scene to yield an integral rep-
resentation of the overall scene [3]. When image mosaicking and
super-resolution are combined together, multiple overlapping
low-resolution images of a scene can be fused together to obtain
high-resolution panoramic view of the scene [4]. This method is
referred to as super-resolution mosaicking.

Over the last decade, a number of algorithms related to
mosaicking [5–15] and super-resolution reconstruction [16–27]
have been proposed. Super-resolution reconstruction performance
has been most influenced by the choice of ML estimation and reg-
ularization technique. An L2 Norm-based ML estimation with Mar-
kov Random Fields regularization is proposed in [16]. Fasiu et al.
[17] proposed an L1 Norm-based ML estimator and bilateral total
variation in their super-resolution algorithm. Later they [18] used
an L1 Norm-based ML estimator and a combination of luminance,
chrominance, and orientation regularizations for color image
super-resolution. Zhang et al. [19] used L2 Norm-based ML estima-
tor with Tikhonov regularization for super resolving MRI images.
Authors in [20] employed a Huber Norm-based ML estimator along
with Huber-Tikhonov regularization. Ng et al. [21] suggested an L2
Norm-based ML estimator together with TV regularization. An L2
Norm-based estimator and Laplacian regularization is proposed
in [22]. Panagiotopoulou et al. [23] utilized Turkey, Lorentzian,
and Huber Norm-based ML estimators in combination with bilat-
eral total variation regularization. In [24], authors proposed an L2
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Norm-based ML estimator along with directional bilateral total
variation and tri-modal regularization. L2 Norm-based ML estima-
tors with spatially adaptive total variation regularizations are
described in [25,26]. Chen et al. [27] proposed an L2 Norm-based
ML estimator and adaptive co-sparse regularization. Most of the
aforementioned methods [16–18,21,23,25,26] are based on simple
estimation techniques, such as L1 and L2 Norm, for the data fidelity
term; hence, they are very sensitive to their assumedmodel of data
and noise. In robust statistical estimation problems, Huber Norm is
designed to manage outliers more efficiently than the L1 and L2
Norms. Even though a few of the aforementioned methods
[19,22] investigate the effect of Huber Norm as a superior estima-
tor, they are either computationally expensive because of the
choice of regularization or otherwise inferior to the methods,
which use simpler regularizations. Majority of the aforementioned
methods [16–23] used constant regularizations with manually
chosen regularization parameters, which have the disadvantage
of generating artifacts particularly in the smooth image regions.
An adaptive regularization, on the other hand, uses spatial infor-
mation distributed in the image to constrain the regularization
strength in different image regions. Even though [25–27] used
adaptive regularization models, use of less robust L2 Norm and
computationally expensive regularization model make these
methods unsuitable for many applications. In [28–30], authors
used adaptive regularization parameters. However, these methods
are based on less suitable L2 Norm and Tikhonov regularization,
which usually generates overly smooth output. Moreover, from
the state of the art, it is obvious that even though research has been
performed in mosaicking and super-resolution, very little work has
been done on super-resolution mosaicking.

To assess the efficiency of the super-resolution algorithms, sev-
eral metrics [20,25–27,31–35] have been proposed over the last
decades. Ng et al. [20] used a single performance metric requiring
a ground truth image to evaluate their algorithm. Yuan et al. [25]
used two no-reference performance metrics. However, these met-
rics do not seem to be correlated to the human visual perception,
and, hence fail when tested for different distortion types or differ-
ent distortion levels within a particular distortion type. Authors in
[26,27] used two metrics, which rely on the availability of the
ground truth frames. Zhang et al. [31] used three metrics that
require ground truth images and suffer from indistinguishable
dynamic ranges. Laflen et al. [32] proposed four metrics; however,
all these metrics require computationally expensive setups. Tian
et al. [33] suggested three measurement metrics that involve either
measuring sub-pixel shifts between frames or detecting interest
points or segmenting an image, making these metrics computa-
tionally complex. Additionally, all the metrics require ground truth
images for evaluation. Yet another three performance metrics used
in [34] require the availability of ground truth frames. Additionally,
these metrics do not seem to be superior to simple pixel-based
measures. Nelson et al. [35] suggested the use of two performance
metrics, which suffer either from having poor dynamic range, or
from quantifying fidelity rather than the amount of distortion in
the output.

In this paper, we propose a super-resolution mosaicking
algorithm, which registers the successive frames into a common
coordinate system and simultaneously generates mosaic output
with improved resolution. The novelty of the proposed method is
that it is based on an adaptive regularization and it utilizes Huber
Norm for maximum likelihood estimation in combination with a
directional Huber-Markov regularization. Use of a no-reference
performance metric based on reciprocal singular value curve for
evaluating the proposed algorithm is also a novel idea. Other than
this metric, five performance measuring metrics mentioned in [4]
are also used for quantitative evaluation. In order to demonstrate
the superiority of the proposed method, its performance is

compared with two other types of super-resolution mosaicking
methods based on Tikhonov regularization [19], and TV regulariza-
tion [21] for super-resolution. The remainder of this paper is orga-
nized in five sections. In Section 2, we discuss the mathematical
model of the proposed super-resolution mosaicking approach
and the three other aforementioned approaches used for
performance comparison. In Section 3, we present our proposed
algorithm, performance evaluation metrics, and experimental
setup. In Section 4, we provide and discuss the evaluation results,
demonstrating the efficacy of the proposed algorithm. Finally, in
Section 5, we draw evidence-based conclusions.

2. Methodology

2.1. Mathematical model

The proposed super-resolution mosaicking method and the two
other comparative methods are all based on similar concepts of
minimizing an error functional using maximum a posterior esti-
mates and then solving optimization problems. Thus, these algo-
rithms share similar mathematical backgrounds but utilize
different Norms and regularizations. In this section, the common
mathematical model using various Norms and regularizations
employed by these three algorithms is discussed in detail.

In order to develop a comprehensive understanding of the
super-resolution mosaicking algorithm it is often customary to for-
mulate a linear observation model, which relates the acquired low-
resolution images to the super-resolution mosaic. The observation
model aims to include most of the factors that cause degradations
to the acquired images. The current model incorporates warp, blur
(both atmospheric blur and optical blur), noise, and downsam-
pling, since these are the most common degradations and can be
modeled fully or partially in different super-resolution mosaicking
techniques. According to [36] the observation model could be
expressed as:

yk ¼ DBkWkB
a
kR½x�k þ nk for 1 6 k 6 K ð1Þ

where the kth low-resolution observation yk is generated from the
desired super-resolution mosaic x, which undergoes the aforemen-
tioned degradations. Ba

k denotes the atmospheric blur effect, Wk

denoted the warp operation, Bk represents the optical blur effect,
and D is the decimation effect. nk is the additive noise for the kth
image. R[ ] is the reconstruction operator, that extracts warped
images from the super-resolution mosaic. Conventionally, the
variables R½x�k, yk, and nk are rearranged as column vectors in
lexicographic order, whereas the variables Ba

k , Wk;Bk; and D are
expressed as matrices.

Since the aim of the super-resolution mosaicking algorithm is to
determine an estimate of x given the captured image sequence and
the characterization of the imaging process, it is essentially an
inverse process. Consequently the super-resolution mosaicking
algorithm’s stability is not solely determined by the availability
of multiple low-resolution observations, rather estimation of sev-
eral other factors like Ba

k, Bk, and nk are also necessary [4]. Clearly,
super-resolution mosaic assembly is a large sparse optimization
problem, which could be solved using iterative methods [37]. How-
ever, instead of sparse matrices multiplication, basic image opera-
tions (e.g. convolution, warping, down-sampling) could be applied
along with gradient computation in order to speed up the required
super-resolution computations. Subsequently, an estimate of the
super-resolution mosaic x̂ could be achieved from Eq. (1) by opti-
mizing a utility function, which minimizes the error between the
input low-resolution images and the reconstructed ones [38]. A
common utility function using the maximum likelihood estimate
is expressed as:
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