Tetrahedron Letters 49 (2008) 3176-3180

Tetrahedron Letters

Synthesis of procyanidins by stepwise- and self-condensation using 3,4-cis-4-acetoxy-3-O-acetyl-4-dehydro-5,7,3',4'-tetra-O-benzyl-(+)-catechin and (-)-epicatechin as a key building monomer

Kin-ichi Oyama^a, Miyuki Kuwano^b, Mie Ito^b, Kumi Yoshida^c, Tadao Kondo^{b,c,*}

^a Chemical Instrument Room, Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan

^b Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan

^c Graduate School of Information Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan

Received 16 January 2008; revised 27 February 2008; accepted 29 February 2008 Available online 7 March 2008

Abstract

3,4-cis-4-Acetoxy-3-O-acetyl-4-dehydro-5,7,3',4'-tetra-O-benzyl-(+)-catechin (1a) or (-)-epicatechin (1b) reacted high regio- and stereo-selectively with 1.5 equiv of the 5,7,3',4'-tetra-O-benzyloxyflavan-3-ol (4a or 4b) in the presence of 1 equiv of TMSOTf to give the corresponding procyanidins. On the other hand, the self-condensation of 1a in the presence of a catalytic amount of $B(C_6F_5)_3$ afforded wide-range procyanidins from dimer to 15-mer like a biomass. © 2008 Elsevier Ltd. All rights reserved.

Keywords: Procyanidin; Stepwise- and self-condensation; 4-Acetoxy-3-acetylcatechin; 4-Acetoxy-3-acetylcatechin

Procyanidins (condensed tannins) are widely distributed in food such as fruits, beans, cocoa, and tea and show multiple biological activities such as antioxidant, anti-inflammatory, anti-atherosclerotic, and anti-allergy effects. ^{1–3} Thus, diets containing procyanidins are important for maintaining and improving health. However, naturally occurring procyanidins are composed of complex mixtures from dimer to about 15-mer with various linkages and stereochemical differences. ^{2–4} Furthermore, procyanidins are highly sensitive to air, ¹ thus, isolation of each component is difficult. To investigate the biological activities and medicinal utilities of procyanidins, a synthetic supply of the desired procyanidin oligmers is required. For this purpose, development of controlled regio- and stereo-selective oligomerization is essential.

There are two strategies on the synthetic approach of procyanidin oligomers. One is stepwise-condensation,

which is able to synthesize defined oligomers with an unambiguous stereo- and regiochemistry. The other is self-condensation, which produces at once biomass-mimetic materials having various oligomers. We designed a highly reactive and relatively stable monomer of 3,4-*cis*-4-acetoxy-3-O-acetyl-(+)-catechin and (-)-epicatechin as a donor. Here, we report the synthesis of various 4,8-linked procyanidins by using two kinds of Lewis acids, TMSOTf and B(C_6F_5)₃ as catalysts.

After Kawamoto's report, ^{5a,6} many condensation conditions for procyanidin oligomers using catechin derivatives and Lewis acids have been studied. ^{5,6} However, there were several synthetic problems, such as the reactive efficiency and the oligomerization control. From the previous reports, ^{5–7} the reactivity and the stereoselectivity might depend on the leaving group of the C4-position and the protecting group of C3–OH (Fig. 1). Recently, Suzuki et al. reported that the C4-acetoxy derivatives might be excellent candidates as building blocks for procyanidin synthesis. ^{7,8} Furthermore, the protecting group of C3–OH influences the stereoselectivity as well as the reactivity

^{*} Corresponding author. Tel./fax: +81 52 789 5638.

E-mail address: kondot@info.human.nagoya-u.ac.jp (T. Kondo).

1a: $R^1 = Ac$, $R^2 = Ac$ **2**: $R^1 = TBS$, $R^2 = Ac$

Fig. 1.

$$\begin{array}{c} \text{Nu} \\ \downarrow \beta \\ \text{BnO} \\ \downarrow \beta \\ \text{BnO} \\ \downarrow \beta \\ \text{BnO} \\ \downarrow \beta \\ \downarrow \beta \\ \text{Nu} \\ \downarrow \beta \\ \text{Nu} \\ \downarrow \beta \\ \text{Ar} \\ \downarrow \beta \\ \text{Ar} \\ \downarrow \beta \\ \text{Nu} \\ \downarrow \beta \\ \text{Nu} \\ \downarrow \beta \\ \text{Nu} \\ \downarrow \beta \\ \text{Ar} \\ \downarrow \beta \\ \text{Nu} \\ \text{Nu}$$

Fig. 2.

due to the steric factor and the neighboring participation-effect like the case of glycosylation (Fig. 2). ⁵⁻⁷ Considering these experimental observations we designed two monomers, 3-O-acetyl- and 3-O-TBS-, 4-acetoxy-perbenzylcate-chin, 1a and 2.

5,7,3',4'-Tetra-*O*-benzylcatechin (**4a**) was prepared from (+)-catechin (**3a**) (53%) according to Kawamoto's procedure. ^{6a,9} **4a** was then protected with TBSCl-imidazole (94%), and oxidized with DDQ in a suspension of CH₂Cl₂ and H₂O to give the 4-hydroxy **5a** in 70% yield (Scheme 1). The configuration of **5a** was determined to be 3,4-*cis* by NMR analysis. ¹⁰ **5a** was acetylated with Ac₂O in pyridine

to give the 4-acetoxy-3-O-TBS derivative **2** in 66% yield. The TBS-group of **5a** was deprotected with TBAF (96%), then, the obtained product was acetylated with Ac₂O in pyridine to give the 3,4-cis-4-acetoxy-3-O-acetyl-4-de-hydro-5,7,3',4'-tetra-O-benzyl-(+)-catechin (**1a**)¹¹ in 90% yield (Scheme 1).

Condensation between 2 and 4a was performed in the presence of BF3·Et2O to give only a trace amount of the partially desilylated dimers. 12 The low reactivity may be due to a large steric-hindrance of TBS at 3-OH of 2. Instead of 3-O-TBS compound 2, 3,4-O-diacetoxy 1a was reacted with 4a in the presence of BF₃·Et₂O. Compound 1a and 4a smoothly condensed at 0 °C within 5 min to give oligomers, dimer 6 (57%), trimer 7 (20%), and tetramer 8 (3%) (Table 1, entry 1). 13 Concerning the configuration of 4,8-linkage of the oligomers, all of them were determined to be *trans* to 3*C*-OAc by $J_{3,4} = 9-10$ Hz.¹³ Various Lewis acids were examined as promoters for the condensation reaction of 1a and 4a in CH₂Cl₂ (Table 1). Surprisingly, with only 1 equiv of TMSOTf at -78 °C for 5 min, the dimer was yielded up to 82% with high stereoselectivity $(\alpha/\beta 97/3)^{14}$ (Table 1, entry 2). The stereoselectivity and reactivity might arise from the neighboring participationeffect at 3-O-acetylate.^{5f} After deacetylation of 6 (97%), careful hydrogenolysis by H₂/Pd(OH)₂ was carried out to give procyanidin B3 (9) in 91% yield (Scheme 2).¹⁶

For structural determination of procyanidins isolated from seed coats of red adzuki bean, *Vigna angularis*,³ we synthesized a trimer by using **1b** and **4a** in the presence of TMSOTf. The 4-acetoxyepicatechin derivative **1b** was synthesized from (–)-epicatechin (**3b**) according to the same procedure as **1a** (Scheme 1).¹⁰ The condensation between **1b** and **4a** in the presence of TMSOTf in CH_2Cl_2 for 5 min at -78 °C gave dimer **10** in 70% yield with a small

Download English Version:

https://daneshyari.com/en/article/5284974

Download Persian Version:

https://daneshyari.com/article/5284974

<u>Daneshyari.com</u>