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a b s t r a c t

Considering blind image deconvolution as a statistical estimation problem, we propose an unbiased esti-
mator of the prediction error – Mallows’ statistics CL – as a novel criterion for estimating a point spread
function (PSF) from the degraded image only. The PSF is obtained by minimizing this new objective
functional over a family of smoother filterings (with frequency-dependent regularization term). We then
perform non-blind deconvolution using the popular BM3D algorithm. The CL-based framework is exem-
plified with a number of parametric PSF’s, involving a scaling factor that controls the blur size. A typical
example of such parametrization is the Gaussian kernel.
The experimental results show that the CL-minimization yields highly accurate estimates of the PSF

parameters, which also result in a negligible loss of visual quality, compared to that obtained with the
exact PSF. The highly competitive results demonstrate the great potential of developing more powerful
blind deconvolution algorithms based on the CL-estimator.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

As a standard linear inverse problem, blind image deconvolu-
tion has been an important image processing topic for several dec-
ades. The task amounts to estimating both original image and point
spread function (PSF) from the observed image only. Notable
examples of real applications can be found in medical imaging
[1], microscopy [2], astronomy [3,4], remote sensing [5] and infra-
red imaging [6]. To address the ill-posedness of the problem, it is
typical to introduce a certain consumption or priors of the original
image and the PSF by means of regularization techniques [7–9] or
Bayesian approaches [10,11], which utilize optimization methods
to simultaneously estimate both original image and the PSF.

Recently, it is preferable to estimate the original image and the
PSF separately: firstly estimate the PSF, and then, perform non-
blind deconvolution. This strategy is more appealing, since it
allows to use any developed high-quality non-blind deconvolution
algorithms. In this work, we choose this procedure, and since there
are already several excellent non-blind deconvolution algorithms
available (see BM3D [12] for example), we are going to focus on
PSF estimation.

Non-parametric PSF estimation – The PSF is represented by
discrete pixel values. In this regime, it is crucial to incorporate a
certain assumption of the PSF, within regularization or Bayesian
framework [10,11,9,8].

Parametric PSF estimation – In specific applications, the para-
metric forms of the PSF can be either theoretically available or
practically assumed, from the physical description of the image
acquisition [4,5,2,6,13,14]. Typical examples of the parametric
approach can be found in the applications of optical imaging
[14], fluorescence microscopy [2,15,13], atmospheric turbulence
[16,17] and astronomy [4], interferometry [18]. However, due to
the limitations, the PSF parameters are unknown or imperfectly
known, and thus, need to be estimated, in addition to the original
image.

In parametric representation, the PSF is completely character-
ized by a small number of parameters, which dramatically reduces
the degrees of freedom of PSF estimation [15,19]. Moreover, the
parametric form confines the solution of PSF to a predefined func-
tion space, and avoids delta function as the trivial solution [19]. To
this end, the present paper is devoted to parametric estimation –
estimating the PSF parameters, from the observed image only.

A number of methods have been proposed for (particular) PSF
types. The PSF parameters can be estimated by kurtosis minimiza-
tion of the restored image [17]. Chen et al. estimated PSF parame-
ter by selecting to be at the maximum point of the differential
coefficients of restored image Laplacian ‘1-norm curve [20]. How-
ever, all the approaches mentioned above need to manually adjust
regularization parameter for restoration. In addition, kurtosis [17]
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and DL1C [20] methods merely provide empirical solutions, being
lack of theoretical justification of the accuracy of PSF estimation.
APEX method estimated the PSF parameters by matching the PSF
to the blurred image in frequency domain [21]. This method is only
applied to a special type of PSF, which restricts a wider range of
applications.

Among all the parametric forms of the PSF [2,15,21], of great
significance and applicability is the Gaussian function, since it
can be used for modelling many degradation scenarios in real
applications. For example, Gaussian function can be used as the
approximation of PSF of fluorescence microscopy [22,13], electro-
optical systems [5,23,6] and atmospheric turbulence [4,16,24,17].
Thus, the estimation of Gaussian blur variance (the only unknown
PSF parameter) becomes particularly interesting. As mentioned
above, kurtosis-based [17], DL1C [20] and APEX [21] methods
can be applied to this problem.

Another example deserving close attention is jinc function,1

which is often used to describe the PSF under the diffraction-
limited condition in optics. The scaling factor of jinc function (related
to aperture diameter and wavelength [26]) needs to be estimated, if
the optical instrument is not exactly clarified.

In the present paper, we propose a novel criterion for paramet-
ric PSF estimation – Mallows’ statistics CL. The statistics CL, which
was first proposed by Mallows [27], is an unbiased estimator of
prediction error.2 In statistics, it has been extensively studied and
applied for model selection problems, typically, subset-regression
and ridge estimator [28,29]. Now, considering deconvolution as
estimation problem of linear model, we adopt the statistics CL as a
new criterion for parametric PSF estimation. We show that the
CL-minimization leads to highly accurate estimation of PSF parame-
ters both theoretically and experimentally.

The paper is organized as follows. Section 2 is devoted to the
theoretical analysis, where we propose and validate a novel crite-
rion for PSF estimation – Mallows’ statistics CL, incorporating a
simple smoother filtering. In Section 3, we exemplify the proposed
framework with several particular types of PSF, and report the
experimental results for discussion. Some concluding remarks are
finally given in Section 4.

Throughout this paper, we use boldface lowercase letters, e.g.
x 2 RN , to denote N-dimensional real vectors, where N is typically
the number of pixels in an image. The nth element of x is written
as xn. The linear transformations (matrices) RN ! RM are denoted
by boldface uppercase letters, e.g. H 2 RM�N . HT 2 RN�M denotes
the transpose of matrix H. Also note that we use the subscript
ð�Þ0 to denote the true quantity of ð�Þ, for example, matrix H0 is
the true quantity of H.

2. Theoretical background

2.1. Problem statement

Consider the linear model

y ¼ H0xþ b; l0 ¼ H0x ð1Þ
where y 2 RN is the degraded image of the original (unknown)
image x 2 RN; H0 denotes the latent true (unknown) convolution
matrix constructed by the PSF h0, the vector b 2 RN is a zero-mean
additive Gaussian white noise with variances r2. For the conve-
nience of the following discussions, we denote the noise-free
blurred data H0x by l0. For the PSF estimation, our purpose is to
accurately estimate the matrix H0, from the observed data y only.

2.2. Expected prediction error: an oracle criterion for PSF estimation

In statistics, it is conventional to refer to the computation of x as
estimation, and to the computation of l0 as prediction [30]. To
predict l0, denoting a linear function (or processing) by matrix
U 2 RN�N , applied to the observed data y, the expected prediction
error (EPE: referring to the estimation of l0) is defined as [30]:

EPE ¼ 1
N
E Uy � l0

�� ��2n o
ð2Þ

where Uy is an estimate of l0 by linear processing U, Ef�g denotes
the mathematical expectation.

The following theorem shows that given the linear processing U
as an exact smoother filtering (described below), there exists a
simple relation between the solution H to the EPE minimization
and the true convolution matrix H0.

Theorem 2.1. Consider only linear processings U in the form of exact
smoother filtering defined as:

UðxÞ ¼ jHðxÞj2
jHðxÞj2 þ CðxÞ=SðxÞ ð3Þ

in frequency domain, where HðxÞ is the Fourier representation of the
PSF, CðxÞ and SðxÞ are the power spectral densities of signal x and
noise b, respectively. Minimizing the EPE (2) over H3:

min
H

1
N
E Uy � l0

�� ��2n o
ð4Þ

yields that jHðxÞj ¼ jH0ðxÞj, where H0ðxÞ is the frequency representa-
tion of the true PSF h0.

See Appendix A for the proof. This theorem states that: (1) the
EPE minimization is essentially equivalent to matching jHðxÞj to
the true jH0ðxÞj in Fourier domain; (2) the EPE minimization can
only leads to the equality of magnitude frequency response of
the PSF: jHðxÞj ¼ jH0ðxÞj, whereas the phase response is not
reflected. Hence, we consider only zero-phase blur models in this
work. Since many real-life blurs – linear motion, out-of-focus and
atmospheric turbulence blurs – have zero phase, this assumption
is rather unrestrictive.

2.3. Mallows’ statistics CL: an unbiased estimator of the prediction
error

Notice that we cannot directly minimize the prediction error,
since l0 ¼ H0x is unknown in practice. However, based on the linear
model (1), the quantity of the prediction error can be replaced by a
statistical estimate – Mallows’ statistics CL [27], involving only the
measurements y, as summarized in the following theorem.

Theorem 2.2. Given the linear model (1), Mallows’ statistics CL [27]:

CL ¼ 1
N

Uy � yk k2 þ 2r2

N
TrðUÞ � r2 ð5Þ

is an unbiased estimator of the prediction error (2), i.e., EfCLg ¼ EPE,
where Tr denotes matrix trace.

See Appendix B for the proof, which is similar to the original

derivation of Mallows [27]. Note that the first term kUy � yk2 of
(5) is the residual sum of squares (RSS) in model selection problem
[27]. We can see that the statistics CL depends on the observed data
y and the matrix U (involving the unknown H we want to esti-
mate). Thus, it can be a practical substitute of the prediction error.

1 The terminology jinc stems from optics, due to the structural similarity to sinc
function [25].

2 In statistics, the prediction error is also called prediction loss [28].

3 By Parseval’s theorem, EPE minimization in spatial domain is equivalent to that in
frequency domain (see Appendix A for details).

116 F. Xue et al. / J. Vis. Commun. Image R. 33 (2015) 115–122



Download	English	Version:

https://daneshyari.com/en/article/528549

Download	Persian	Version:

https://daneshyari.com/article/528549

Daneshyari.com

https://daneshyari.com/en/article/528549
https://daneshyari.com/article/528549
https://daneshyari.com/

