Tetrahedron Letters 49 (2008) 1184-1187

Tetrahedron Letters

A new synthetic route to 3-polyfluoroalkyl-containing pyrroles

Elena N. Shaitanova, Igor I. Gerus*, Valery P. Kukhar

Institute of Bioorganic Chemistry and Petrochemistry National Academy of Sciences of Ukraine, Str. Murmanskaya 1, Kiev, 02094, Ukraine

Received 30 October 2007; revised 29 November 2007; accepted 10 December 2007

Available online 15 December 2007

Abstract

A novel approach to 3-polyfluoroalkyl pyrroles is reported based on step by step reactions: 1,2-addition of Me_3SiCN to β -alkoxyvinyl polyfluoroalkyl ketones, reduction with $LiAlH_4$ and subsequent hydrolysis with intramolecular cyclization. The hydrolytic instability of various polyfluoroalkyl groups at position 3 of the pyrrole ring was evident and a pathway for the hydrolysis was proposed. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Enone; Pyrrole; Cyclization; Hydrolysis; Fluoroalkyl groups; 3-Polyfluoroalkyl pyrroles

Recently, organofluorine compounds have gained considerable interest due to their enhanced biological activity, 1-3 especially polyfluoroalkyl substituted heterocycles. Pyrrole-containing structures are common in syntheses of bioactive compounds. For example, fluoroalkyl-containing pyrroles are good precursors to various herbicides 4 and porphyrins. 5-7

Synthesis of pyrroles bearing several substituents together with a polyfluoroalkyl group at position 3 has been reported, whereas 3-polyfluoroalkyl pyrroles with few other substituents are less accessible. Thus, attention has been devoted to the synthesis of 3-trifluoromethyl substituted pyrroles mainly as precursors for electron deficient porphyrins. The first synthesis of a 3-trifluoromethyl-containing pyrrole was accomplished using the modified Knorr condensation starting from ethyl trifluoroacetoacetate. A later synthesis of 3-trifluoromethyl pyrroles used α,β -unsaturated ketones. Another approach to 3-trifluoromethyl substituted pyrroles consisted of photochemical trifluoromethylation using CF_2I_2 or CF_3I . A mixture of 2- and 3-trifluoromethyl pyrroles (in very poor yield) was obtained in ratios of isomers which depended

In addition, there are reports on the synthesis of 3-tri-fluoroacetyl pyrroles starting from readily available β -alk-oxyvinyl trifluoromethyl ketones $1.^{13,14}$ Thus, we have developed a new efficient route to the construction of 3-polyfluoroalkyl-containing pyrroles starting from polyfluoroalkyl-containing enones 1a–g.

The addition of trimethylsilylcyanide (TMSCN) to carbonyl compounds is widely used to obtain silylated cyanohydrins, which are used as precursors for β -amino alcohols, 16a α -hydroxy acids 16b and α -amino acids. 16c The first step in the proposed synthetic route is 1,2-addition of TMSCN to the carbonyl group of enones **1a**–**g** in the presence of a catalytic amount of base 17 leading to silylated cyanohydrins **2a**–**g** (Scheme 1). 18 Cyanohydrins **2** were easily reduced with LiAlH₄ to amino alcohols **3** in high yields (Table 1). 19

$$R^{1}O$$
 R^{2}
 $R^{1}O$
 R^{2}
 $R^{1}O$
 R^{2}
 $R^{1}O$
 R^{2}
 R^{2}
 R^{3}
 $R^{1}O$
 R^{2}
 R^{3}
 $R^{1}O$
 R^{2}
 R^{3}
 $R^{4}O$
 $R^{4}O$
 R^{2}
 $R^{4}O$
 $R^{4}O$

Scheme 1. Reagents and conditions: (i) TMSCN, Et₃N, 0–10 °C; (ii) LiAlH₄, ether, 0–5 °C.

on the reaction conditions and the nature of the substituents on the pyrrole ring. 8,12

^{*} Corresponding author. Tel.: +38 044 573 2598; fax: +38 044 573 2552. *E-mail address*: igerus@hotmail.com (I. I. Gerus).

Table 1 Yields of cyanohydrins 2 and amino alcohols 3

Tieras er eyamenyarms 2 and amme areeness e									
1–3	R ¹	\mathbb{R}^2	\mathbb{R}^3	R_{F}	Product 2 yield (%)	Product 3 yield (%)			
a	Et	Н	Н	CF ₃	80	88			
b	Et	H	Н	CHF_2	80	80			
c	Et	H	Η	CF ₂ Cl	87	75			
d	Me	Me	Η	CF_3	90	92			
e	Et	H	Br	CF_3	82	81			
f	Et	Ph	Η	CF_3	85	90			
g	Et	H	Н	C_2F_5	74	78			

The amino alcohols **3** are good precursors to biologically active fluorinated compounds, and we have recently used amino alcohols $\bf 3a,b$ for the synthesis of β -R_F-containing analogs of GABA. NMR spectral data of amino alcohols $\bf 3c-g$ are similar to the corresponding data for $\bf 3a,b$. Amino alcohols $\bf 3a-g$ maintain the starting configuration of the C=C double bond under the reaction conditions. Purification of amino alcohols $\bf 3$ was dependent on the nature of the substituents $\bf R^2$ and $\bf R^3$: products $\bf 3a-c,g$ are oils which were purified by vacuum distillation, whereas the crystalline amino alcohols $\bf 3d-f$ were purified by crystallization.

The last step of the 3-polyfluoroalkyl pyrrole synthesis was hydrolysis of the alkoxyvinyl group with the formation of aminocarbonyl compounds 4 which are unstable and cyclized readily to the pyrroles 6 via intramolecular Schiff base 5 formation with subsequent dehydration and proton migration (Scheme 2, Table 2).

The structure of the pyrroles was dependent on the reaction and isolation conditions.²⁰ It was found that some of the R_F-groups at position 3 of the pyrrole ring were hydrolytically unstable. The main attention was focused on the synthesis of 3-trifluoromethylpyrrole **6a** and we found the optimal reaction conditions for the hydrolysis of amino alcohol **3a** using ¹⁹F NMR spectroscopy using the low field shift (20–25 ppm) of the trifluoromethyl group signal after pyrrole ring formation. Thus, method A provides a higher yield compared to method B because of the volatility of product **6a** while its trifluoromethyl group is rather stable (Table 2). The spectral data of product **6a** (3-trifluoromethylpyrrole) were identical to those published by Leroy.⁹

$$R^3$$
 R^1
 NH_2
 NH_2
 R^3
 R_F
 NH_2
 R^3
 R_F
 NH_2
 R^3
 R_F
 R^3
 R^3

Scheme 2. Reagents and conditions: (i) H⁺, H₂O, MeCN, rt.

Table 2
Yields of pyrroles 6 and 7

3–7	\mathbb{R}^2	\mathbb{R}^3	R_{F}	6 Yield (%)	R	7 Yield (%)
a	Н	Н	CF ₃	65 ^a	ОН	_
b	H	Н	CHF_2	_	H	48
c	H	Н	CF ₂ Cl	_	OH	45 ^b
d	Me	Н	CF_3	55 ^a	OH	53 ^b
e	H	Br	CF_3	5–10 ^d	OH	_
f	Ph	Н	CF_3	90 ^{b,c,e}	OH	_
g	H	Н	C_2F_5	_	CF_3	55 ^{b,c}

- ^a Method A: 0.1 equiv of HCl, rt.
- ^b Method B: 1 equiv of HCl, rt.
- c Reaction temperature ~80 °C.
- ^d From ¹H and ¹⁹F NMR spectroscopic data of the reaction mixture.
- e From Schiff base 5f.

Hydrolysis of amino alcohols **3b**–g resulted in both pyrrole ring formation and hydrolysis of the corresponding R_F groups. We suggest that hydrolysis of polyfluoroalkyl groups took place after pyrrole ring formation (Scheme 3), since during the hydrolysis of **3b** (method A) with a catalytic amount of HCl we observed 3-difluoromethylpyrrole (**6b**) formation in the reaction mixture by NMR spectroscopy together with pyrrole-3-carboxaldehyde (**7b**). However, only aldehyde **7b** was obtained after work up and purification by column chromatography; its structure was unambiguously confirmed by IR and NMR spectroscopy. Only product **7b** was obtained using method B.

During the hydrolysis of amino alcohol **3c**, 1*H*-pyrrole-3-carboxylic acid (**7c**) was obtained in a moderate yield, the formation of pyrrole **6c** with a chlorodifluoromethyl group was not detected (¹⁹F NMR spectroscopy) due to easier chloride ion elimination. The introduction of the weak electron donating methyl group at position 5 of the pyrrole ring leads to destabilization of the CF₃ group and as a result (method B conditions) a mixture of **6d** and **7d** was observed by NMR but only **7d** was obtained after work up and purification. Using method A, product **6d** was formed in a moderate yield.

The amino alcohols 3e-g were significantly more stable to hydrolysis than the amino alcohols 3a-d and hydrolysis of the ethoxyvinyl group occurred using method B at a higher temperature (~ 80 °C). In the case of bromo-containing amino alcohol 3e a complex mixture of reaction products together with pyrrole 6e (observed only by NMR spectroscopy) was obtained. Under these conditions,

Scheme 3. Assumed mechanism of the hydrolysis of the $R_{\rm F}$ groups at position 3 of pyrroles.

Download English Version:

https://daneshyari.com/en/article/5285632

Download Persian Version:

https://daneshyari.com/article/5285632

<u>Daneshyari.com</u>