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a b s t r a c t

This paper presents a novel, simple, yet robust texture descriptor against noise named the adjacent
evaluation local binary patterns (AELBP) for texture classification. In the proposed approach, an adjacent
evaluation window is constructed to modify the threshold scheme of LBP. The neighbors of the
neighborhood center gc are set as the evaluation center ap. Surrounding the evaluation center, we set
up an evaluation window and calculate the value of ap, and then extract the local binary codes by
comparing the value of ap with the value of the neighborhood center gc. Moreover, this adjacent
evaluation method is generalized and can be integrated with the existing LBP variants such as completed
local binary pattern (CLBP) and local ternary pattern (LTP) to derive new image features against noise for
texture classification. The proposed approaches are compared with the state-of-the-art approaches on
Outex and CUReT databases, and evaluated on three challenging databases (i.e. UIUC, UMD and ALOT
databases) for texture classification. Experimental results demonstrate that the proposed approaches
present a solid power of texture classification under illumination and rotation variations, significant
viewpoint changes, and significant large-scale challenging conditions. Furthermore, the proposed
approaches are more robust against noise and consistently outperform all the basic approaches in
comparison.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Texture is an inherent characteristic in visual scenes and
contains important information about the structural arrangement
of surfaces, e.g., the surfaces of wood, fabric, crops in a field, and
many more. Texture analysis is a fundamental issue and also an
active research topic over several decades in image processing,
pattern recognition, computer vision, and other related fields.
Texture classification, as the most important part in texture
analysis, is a discriminative technique aiming at assigning an
unseen texture sample into one of predefined classes.

A wide variety of approaches for texture classification have
been proposed since the initial research in the 1960s [1]. Tuceryan
and Jain [2] divided these approaches into five major categories:
statistical, geometrical, structural, model-based, and signal
processing approaches. Actually, the statistical, model-based, and
signal processing approaches are the most commonly used. The
statistical approaches use the statistical features to describe the
textures [3,4]. In the model-based approaches, the texture image
is modeled as a probability model or as a linear combination of a

set of basis functions [5], e.g., auto-regressive model [6] and
Orthogonal polynomials model [7]. The signal processing
approaches are generally recognized as filtering approaches [8],
in which the texture image is analyzed by filters, including Fourier
filters [9], Gabor filters [10], Wavelet filters [11], Morphological
filters [12], and spatial filters [13,14].

More recently, Local Binary Pattern (LBP) proposed by Ojala
et al. [15] has been known as one of the most successful statistical
approaches for texture classification. LBP is a simple yet efficient
descriptor to describe local image patterns, and has been adapted
to many applications, such as dynamic texture recognition [16],
human actions recognition [17], and more others [18]. It is consid-
ered as an active research tool for texture classification due to its
attractive properties including gray-scale and rotation invariant.
However, the conventional LBP suffers from several limitations,
e.g., the large number of patterns and the sensitivity to noise. In
recent years, lots of improved approaches have been proposed to
address these limitations.

In order to extract more discriminative patterns, several
approaches took full advantage of non-uniform patterns. For
instance, the work of Zhou et al. [19] analyzed the structure and
occurrence probability of non-uniform patterns, and classified all
the non-uniform patterns into different subsets. Liao et al. [20]
proposed dominant LBP (DLBP) which made use of the most
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frequently occurred patterns of LBP to improve the classification
accuracy. Very recently, Guo et al. [21] applied a three-layered
model to learn the optimal pattern subset using the Fisher’s
separation criteria.

To construct the contrast information and complementary
features, a wide variety of approaches have been proposed. For
instance, Heikkilä et al. [22] exploited center-symmetric LBP
(CS-LBP) which combined the strengths of the well-known SIFT
descriptor and the LBP texture operator. Guo et al. [23] developed
the completed LBP (CLBP) which included the information con-
tained in the magnitudes of local differences as complementary
to the signs of LBP. Moreover, Zhao et al. [24] totally abandoned
the local binary structural information in completed local binary
count (CLBC) yet achieved comparable classification accuracy with
CLBP. Tan and Triggs [25] extended the original LBP to 3-valued
codes, i.e., local ternary pattern (LTP). Guo et al. [26] treated the
variance of each point as weight of code value, i.e., LBP variance
(LBPV). Recently, Liu et al. [27] presented an extended LBP, in
which two different and complementary types of features were
extracted from local patches and four descriptors were developed.
Besides, there are other related variants such as joint distributions
of local patterns [28], local energy pattern (LEP) [29], and
histograms of equivalent patterns (HEP) [30].

In order to make the LBP more robust against the interference of
noise, Khellah [31] extracted a global texture feature named
dominant neighborhood structure (DNS) and combined it with
LBP. Although the DNS descriptor can resist noise, the scheme of
LBP operator did not change and was still sensitive to noise. Fathi
et al. [32] proposed the noise tolerant LBP (NTLBP) which made use
of the circular majority voting filtering to reduce the noise effect.
Recently, Maani et al. [33] exploited the local frequency descriptors
(LFD) which took advantage of the local frequencies to create noise
robust features. Both of the NTLBP and the LFD utilized filters to
provide noise robust features, but the threshold scheme of LBP
was not modified. Hence, the limitation of the threshold scheme
is not radically resolved, i.e., the threshold scheme of LBP is still
sensitive to noise.

The fundamental question for this study is: how to modify the
threshold scheme of LBP so that the LBP and its variants can be
more robust against noise. Motivated by the estimated neighbor-
hood structure in DNS [31], a novel, simple, yet robust texture
descriptor against noise named the adjacent evaluation local bin-
ary patterns (AELBP) is proposed for texture classification. In the
proposed approach, the adjacent evaluation window which is
around the neighbor is constructed to modify the threshold
scheme of LBP. In addition, this adjacent evaluation method is gen-
eralized and can be integrated with the existing LBP variants such
as completed local binary pattern (CLBP), completed local binary
count (CLBC) and local ternary pattern (LTP) to derive new image
features against noise for texture classification. Moreover, experi-
mental results demonstrate that the adjacent evaluation window
plays an important role in solving the issue of sensitive to noise
in LBP.

The rest of this paper is organized as follows: Section 2 presents
the proposed AELBP, AECLBP and AELTP in detail. Then Section 3
elaborates the experiments and discusses the experimental results.
Finally, Section 4 concludes the paper.

2. Adjacent evaluation

In this section, an approach named the adjacent evaluation local
binary pattern (AELBP) for texture classification is given in Sec-
tion 2.1. Since the adjacent evaluation method is generalized and
can be integrated with the existing LBP variants, the adjacent eval-
uation completed LBP (AECLBP) and the adjacent evaluation LTP

(AELTP) are derived for texture classification in Sections 2.2 and
2.3 respectively. Finally, the multi-scale analysis and classification
of these approaches are presented in Section 2.4.

2.1. Adjacent evaluation LBP (AELBP)

In the conventional LBP operator, local binary codes are
extracted by comparing the values of neighborhood pixels with
the value of the central pixel and then are encoded to form the
local binary patterns. However, this conventional encoding strat-
egy is especially vulnerable to noise, i.e., the values of the neigh-
bors can be easily changed by random noise, making the local
binary patterns unstable. Concerning this issue, we try to construct
an adjacent evaluation window which is around the neighbor to
reduce the interference of noise. Moreover, inspired by the
encoded strategy of LBP, we propose an approach named the
adjacent evaluation local binary patterns (AELBP), which can be
considered as an extension of LBP. The proposed AELBP is defined
as follows:

AELBPP;R ¼
XP�1

p¼0

sðap � gcÞ2p; sðxÞ ¼ 1 x P 0
0 x < 0

�
ð1Þ

where P points spaced equidistantly around a circle of radius R, gc is
the grayscale value at central point, and ap is set as the average
value of the pth evaluation window excluding the value of evalua-
tion center.

Obviously, the main difference between the LBP and the AELBP
is that AELBP replaces the gp with ap. The entire operation
procedure of the AELBP mainly includes the following two steps:

(1) Calculating the value of ap. Set the neighbor which is
around the neighborhood center gc as the evaluation center
ap. Surrounding the evaluation center, we set up an evalua-
tion window of size W �W (W can only be odd numbers).
Then, excluding the pixel value of the evaluation center,
the value of ap is obtained by calculating the average of
the remaining values in the pth evaluation window. What
needs to be noted is that when the value of W is set as 1,
AELBP is equivalent to the conventional LBP.

(2) Forming the local binary patterns. Local binary codes are
extracted by comparing the value of ap with the value of
the neighborhood center gc. Then, the local binary codes
are encoded to form the patterns.

In order to better explain the entire operation procedure of
AELBP, Fig. 1 illustrates a specific example of AELBP8,1 (W is set
as 3). As is shown in Fig. 1, the value of evaluation center ap in
the 4th evaluation window (i.e. the dashed square) is 152. Accord-
ing to the calculation method mentioned above, the rest of the val-
ues of ap at other evaluation windows can be obtained (i.e. the
bottom left square of solid lines). The value of gc (i.e. 118) is com-
pared with the other eight ap values through the function s(x).
Then, the local binary codes are encoded to form the patterns
(i.e. ‘‘11111111”).

2.1.1. Application example analysis
To illustrate the effectiveness of AELBP, Fig. 2 gives a compar-

ison in terms of the robustness to additive Gaussian noise
(SNR = 20 dB) between the proposed AELBP (W is set as 3) and
the conventional LBP on the Outex texture image (canvas011).
The original texture image is shown in Fig. 2(a) and the corre-
sponding image with additive Gaussian noise is shown in Fig. 2
(b). Fig. 2(c) and Fig. 2(d) are 5 � 5 pixel region, extracted from
the same location (i.e. bottom left) of the corresponding image,
respectively. The patterns of LBP for corresponding pixel region,
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