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a b s t r a c t

Variational models for image segmentation, e.g. Mumford–Shah variational model [47] and Chan–Vese
model [21,59], generally involve a regularization term that penalizes the length of the boundaries of
the segmentation. In practice often the length term is replaced by a weighted length, i.e., some portions
of the set of boundaries are penalized more than other portions, thus unbalancing the geometric term of
the segmentation functional.

In the present paper we consider a class of variational models in the framework of C-convergence the-
ory. We propose a family of functionals defined on vector valued functions that involve a multiple well
potential of the type arising in diffuse-interface models of phase transitions. A potential with equally dis-
tanced wells makes it possible to retrieve the penalization of the true (i.e., not weighted) length of the
boundaries as the C-convergence parameter tends to zero. We explore the differences and the similarities
of behavior of models in the proposed class, followed by some numerical experiments.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Image segmentation consists in looking for a partition of the
spatial domain of an image into homogeneous regions, which helps
to identify meaningful parts of objects in the image. Such a prob-
lem has been extensively studied by various approaches, such as
mixture random-field models [28], Monte-Carlo Markov chain
models [58], using graph-cut and spectral methods [55], and the
Mumford–Shah variational image model [47]. In this paper, we
focus on variational methods and on the approach based on C-con-
vergence theory.

Let X � R2 denote a bounded, open set with Lipschitz boundary,
which represents the image domain, and let f : X�!R denote a
bounded function which represents a given image. The Mum-
ford–Shah variational approach to image segmentation consists
in looking for a pair ðu;KÞ, with K � X closed set and
u 2 C1ðX n KÞ, which minimizes the functional

Emsðu;KÞ ¼ a
Z

XnK
jruj2 dxþH1ðKÞ þ k

Z
X
ðu� f Þ2 dx:

Here H1ðKÞ denotes the 1-dimensional Hausdorff measure of the set
K (the length if K is regular enough), and a; k are positive weights.
The function u is a denoised, piecewise smooth, approximation of
the given image f, and the set K is the set of discontinuities of the
approximate image u. The set K also constitutes the set of edges
of the image which are then linked together according to a mini-
mum length criterion. The piecewise constant Mumford–Shah
model consists in minimizing the functional Ems with respect to
functions u which satisfy the further requirement ruðxÞ ¼ 0 in
X n K .

The Chan–Vese model [21,59] is well-known with a successful
level set implementation of piecewise constant Mumford–Shah
variational problem:

Ecvðu;KÞ ¼ H1ðKÞ þ k
XN

i¼1

Z
Xi

ðu� f Þ2 dx: ð1Þ

Here N is a given integer and Xi; i ¼ 1; . . . ;N, are open subsets that
constitute a Borel partition of X. The set K \X is the union of the
part of the boundaries of the Xi inside X:

K \X ¼ [
N

i¼1
@Xi \X; X ¼ ðK \XÞ [

N

i¼1
Xi: ð2Þ

For a fixed set K, the functional Ecv is minimized with respect to the
function u by setting u equal to the mean value of f in Xi, for any

http://dx.doi.org/10.1016/j.jvcir.2014.04.008
1047-3203/� 2014 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail addresses: kang@math.gatech.edu (S.H. Kang), r.march@iac.cnr.it

(R. March).

J. Vis. Commun. Image R. 25 (2014) 1446–1459

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate / jvc i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2014.04.008&domain=pdf
http://dx.doi.org/10.1016/j.jvcir.2014.04.008
mailto:kang@math.gatech.edu
mailto:r.march@iac.cnr.it
http://dx.doi.org/10.1016/j.jvcir.2014.04.008
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci


i ¼ 1; . . . ;N. The subsets Xi are called phases of X n K . The segmen-
tation is usually called two-phase when N ¼ 2 and multiphase
when N > 2. Then a local minimum of the functional is looked for
by considering Euler–Lagrange equations which are solved by the
level set method. This model has been extended to various settings
including piecewise smooth Mumford–Shah variational model, vec-
torial multi-channel and texture segmentation.

In multiphase setting, the objective is to identify multiple dif-
ferent phases by keying the intensity discontinuities. There are
several further region-based multiphase segmentation models
introduced such as [6,23,34,42,57,59]. Brown et al. [16] considered
convex formulation of the Chan–Vese segmentation, and Cham-
bolle et al. [20] discussed a convex relaxation for a family of prob-
lems of minimal length partitions with interesting results. There
are approaches using fuzzy region computation [32,33,53,39,38],
other related work can be found at [19,27,40,41,37].

There are a number of models in image analysis using the dif-
fuse-interface model and well-potential by making the connection
with phase transition models. Ambrosio and Tortorelli [2,3] first
approximated the Mumford–Shah functional by means of qua-
dratic, elliptic functionals using the theory of C-convergence. This
approximation has been numerically implemented for instance in
[43] and a related approach has been studied in [44]. Shen [54]
proposed using Modica and Mortola’s phase transition model
[45,46] for ownership distribution for a stochastic-variational
model for soft Mumford–Shah segmentation. In [25], the authors
considered an approximation of the 2.1D Sketch model
proposed for segmentation with depth by Nitzberg et al. [48].
There are some well-potential approach on image inpainting such
as [13,14,17,26,30]. Another interesting approach based on topol-
ogy optimization is proposed in [4], where the authors introduce
a new model to approximate the length of boundaries in an
optimal partition problem.

We explore a class of multiphase segmentation models based
on a C-convergence approach. We extend to a vectorial setting
the multiphase model such as [34], which is based on the C-con-
vergence result by Modica and Mortola [45,46]:

E�ðzÞ¼
Z

X
�jrzj2þ1

�
sin2ðpzÞ

� �
dxþk

XN�1

k¼0

Z
X
ðck� f Þ2sinc2ðz�kÞdx;

ð3Þ
where N is a given integer, �1=2 6 zðxÞ 6 N � 1=2, and c0; . . . ; cN�1

are constants which depend on functions f and z.
The family of functionals E� C-converges as �! 0þ to a weak

formulation of the piecewise constant Mumford–Shah functional
with weighted length:

EwðKÞ ¼
XM

j¼1

wjH
1ðKjÞ þ k

XN�1

i¼0

Z
Xi

ðci � f Þ2 dx; ð4Þ

where K ¼ [M
j¼1Kj with Kj \ Kl ¼ ; for j–l, the set K and the phases Xi

being defined as in (2), and the weights w1; . . . wM are positive inte-
gers with wj–wl for j–l. Here ci is the mean value of f in Xi. We will
argue that also the multiphase Chan–Vese model [59] yields a seg-
mentation functional with weighted length like (4).

In the present paper, we extend the model (3) by considering
functionals of the type:

E�uðuÞ ¼
Z

X
�auðjrujÞ þWðuÞ

�

� �
dxþ k

Z
X
ðhc;ui � f Þ2 dx; ð5Þ

where u : X! RN is a vector valued function, u is a regularizing
function whose properties will be described later, a P 0 is a param-

eter, c 2 RN is a constant vector, WðuÞ ¼
QN

i¼1 u� eij j2, and
e1; . . . ; eNf g is the standard basis of RN . The function W is called

well-potential and the vectors e1; . . . ; eN at which W vanishes are
called the wells of the potential W. We show that, for � small

enough, a multiphase segmentation is constituted by subsets of X
(phases) where a minimizer u� of E�u is close to a well ei, while
the function u� exhibits transitions across diffuse interfaces
between any two phases. The diffuse interfaces have thickness of
order � and the sharpness of the transition depends on the regular-
izing function u. When the regularizing function u is non-convex,
the functionals E�u extend to a vectorial setting the scalar model
considered in [52,5] for edge-preserving image classification and
restoration.

A motivation of the vectorial setting (5) is the following. Both
Chan–Vese multiphase model and the model (3) do not correspond
properly to the original Mumford–Shah model since the length
term H1ðKÞ is replaced by a weighted length as in (4). This is an
undesirable property since there are no geometric reasons to give
a portion of the discontinuity set K a weight bigger than another
portion, thus unbalancing the geometric term of the segmentation
model. This drawback is common to many variational models con-
sidered in the literature.

The new segmentation functionals E�u permit us to overcome
such a drawback while maintaining useful features of model (3).
Indeed, following the theory of C-convergence, the functionals
(5) give the true length term H1ðKÞ as �! 0þ. We will show that
the vectorial setting and the symmetry of the potential W with
respect to the exchange of the wells ei (not possible in a scalar set-
ting) are crucial properties in order to achieve the true length. The
main contributions of this paper are

� to propose models which give true length approximation via C-
convergence, while giving sharp interfaces by choosing a suit-
able regularizing function u;
� and to explore the differences and the similarities among these

models both analytically and numerically.

Following the Mathematical definitions in Section 2, we care-
fully illustrate in Section 3 when multiphase segmentation models
penalize a weighted length. In Section 4, various models are
explored in the framework of C-convergence and using the well-
potential model. Instead of going into the technical details of each
convergence proof, we outline what is considered in the literature,
and clearly mention what is not shown in the literature. We mainly
focus on understanding the differences of the models. In Section 5,
we review some of recent efficient numerical methods for multi-
phase segmentation. The numerical computation exhibits instabil-
ities due to the non-convex shape of the proposed well-potential,
yet we present the numerical results which are most true to the
proposed model using a stochastic approach to validate these
models.

2. Mathematical definitions

In the following, measðAÞ denotes the two-dimensional Lebes-
gue measure of a set A � R2, and H1ð@AÞ denotes the one-dimen-
sional Hausdorff measure of @A. We denote vectors in RN and
matrices in R2�N by means of bold symbols, if u 2 RN we write
u ¼ ðu1; . . . ;uNÞ. The scalar product of a; b 2 RN is denoted by
ha;bi. The norm j � j denotes the Euclidean norm both in RN and
in R2�N . Let X � R2 be a bounded open set with Lipschitz boundary
which represents the image domain. We will use standard notation
for the Lebesgue and Sobolev spaces LpðXÞ and W1;pðXÞ.

For any N 2 N, the space BVðX; RNÞ of functions of bounded
variation mapping X to RN is defined as the set of vector valued
functions u 2 L1ðX; RNÞ such that

R
X jDuj < þ1, whereZ

X
jDuj ¼ sup

G2W

XN

i¼1

Z
X

uidivgi dx;

S.H. Kang, R. March / J. Vis. Commun. Image R. 25 (2014) 1446–1459 1447



Download English Version:

https://daneshyari.com/en/article/528620

Download Persian Version:

https://daneshyari.com/article/528620

Daneshyari.com

https://daneshyari.com/en/article/528620
https://daneshyari.com/article/528620
https://daneshyari.com

