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a b s t r a c t

We propose a graph cut based global minimization method for image segmentation by representing the
segmentation label function with a series of nested binary super-level set functions. This representation
enables us to use K � 1 binary functions to partition any images into K phases. Both continuous and
discretized formulations will be treated. For the discrete model, we propose a new graph cut algorithm
which is faster than the existing graph cut methods to obtain the exact global solution. In the continuous
case, we further improve the segmentation accuracy using a number of techniques that are unique to
the continuous segmentation models. With the convex relaxation and the dual method, the related
continuous dual model is convex and we can mathematically show that the global minimization can
be achieved. The corresponding continuous max-flow algorithms are easy and stable. Experimental
results show that our model is very competitive to some existing methods.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Image segmentation is a fundamental but important task in
computer vision and pattern recognition. It has received much
attention by researchers during the past several decades. The
objective of image segmentation is to partition an image into several
parts according to some similarity measures such as intensity
means, histograms, structure tensors and so on. There are many
image segmentation methods proposed in the literature, in which
the partial differential equation (PDE) based techniques and
graph cut based approaches are two of the most popular image
segmentation methods.

For PDE methods, the well known level set methods have been
proven to be very flexible and quite efficient for image segmenta-
tion. The Mumford–Shah segmentation model [1] is an important
approach to find a piecewise smooth approximation for a given
image. However, the original Mumford–Shah functional is difficult
to compute due to its weak mathematical properties such as dis-
continuity and non-convexity. By using a level set approximation,
the discontinuity in the Mumford–Shah model can be easily han-
dled and computed. To get a convex model, Cai, etc. [2] proposed
a two-stage method for the Mumford–Shah segmentation model.

Many methods of the fluid mechanics also can be applied to
image segmentation, such as the phase-field method [3] and the
Modica–Mortola phase transition method [4].

For the two-phase segmentation, the Chan–Vese model [5] is a
very successful simplified version of the Mumford–Shah model.
The Chan–Vese model is not convex. This explains why the numer-
ical algorithm may sometimes get stuck at a local minimum close
to the initial condition and produce undesirable segmentation
results. Later, a binary level set method was proposed in [6] as a
variant of the level set method. Meanwhile, the convex relaxation
approach developed in [7] shows that one can get global minimiz-
ers for the piecewise constant Mumford–Shah functional with the
binary approach [6] if we relax the binary constraint. The main
idea of the convex relaxation is to relax the binary characteristic
function into a continuous interval [0,1] such that the non-convex
original problem becomes convex. Solving such a relaxed convex
problem can enable one to find a global minimizer, and then the
global binary solution of the original problem can be obtained by
a threshold process. Combining the convex relaxation and some
recently developed TV (total variation) minimization techniques
[8,9], Bresson, etc. have proposed some fast two-phase global
minimization algorithms for image segmentation in [10,11].

For multi-phase segmentation, a generalization of the Chan–Vese
model has been proposed in [12] to partition an image into n parts by
using log2n level set functions. Similar to the two-phase case, the
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model is non-convex and thus the global minimization cannot be
guaranteed. Recently, a convex formulation of 4-phase Chan–Vese
model has been proposed in [13,14] provided that the segmentation
data term satisfies a convexity condition. Numerical tests show that
this condition may be often satisfied in practice. In case this condi-
tion is violated, some ‘‘truncation’’ procedures have to be used.

Another multi-phase segmentation method is to use the label
function or a PCLSM (piecewise constant level set method [15])
to represent different classes. By using a graph cut implementa-
tion, the PCLSM can be globally solved [16]. In the continuous case,
functional lifting method [17] can be regarded as a convex formu-
lation of PCLSM. As pointed out in [12,18], the TV of the label func-
tion or level set functions in PCLSM and multi-phase Chan–Vese
model does not correspond exactly to the length term in Mum-
ford–Shah model. The main drawback of these models is that some
parts of the boundary are counted multiple times. Therefore pixels
near some of the cluster boundaries will be misclassified (see e.g.
[18]).

More recently, some continuous convex relaxation of the Potts
model [19] have become popular. Bae, etc. proposed a smooth dual
model of the Potts model in [20]. Pock, etc. [21] developed a tight
convex relaxation framework for Potts model. Yuan, etc. [22,23]
designed a max-flow approach to the Potts model. These continu-
ous methods need to solve K unknown characteristic functions
with a partition condition for K-phase clusters.

For the discrete partition problem, graph cut is a powerful tool
to optimize the related energy. For example, the discrete Potts
model restricted to 2-phase segmentation is computationally trac-
table by using some graph cut based min-cut/max-flow algorithms
[24,25]. It is well known that the discrete Potts model is a NP-hard
problem. Namely, if the number of segmentation classes is larger
than two, there is no low-complexity algorithm which can find
the exact global minimizer of the Potts model (see [26,27]). Instead
of exactly solving the Potts model in a discrete setting, some algo-
rithms for approximately minimizing the energy in Potts model
have been proposed in [26], which are known as the popularly
used alpha-expansion and alpha–beta swap algorithms.

Another approximation for the multi-phase Potts model is
Ishikawa’s graph cut method [28], in which the regularization term
of the Potts model is modified such that it can be solved by a graph
cut algorithm, c.f [28,16]. In 2006, Darbon, etc.[29] proposed
another graph cut method for the multiphase segmentation. How-
ever, these graph-based methods generally suffer from metrication
errors since the isotropic TV cannot be minimized by discrete max-
flow algorithm. This difficulty could cause some zigzag edges in the
clusters, which gives unnatural segmentation results. Recently,
some continuous max-flow [30,22] algorithms have been devel-
oped by analyzing the primal min-cut and the dual max-flow prob-
lems with the Lagrangian multiplier method. These algorithms
combine the advantages of both the continuous method and dis-
crete model, and thus can provide impressive results.

This paper is devoted to propose a new graph cut method based
on the multi-phase segmentation method, and the label function is
represented by the binary super-level set. We will show that it is
possible to minimize a modified piecewise constant Mumford–Shah
segmentation model with the super-level set representation by
solving the min-cut problem of a constructed graph.

The contributions of this paper include:

� We reveal the connections between the logical graph cut
(discrete method) and the super-level set (continuous method)
in the multiphase segmentation, and construct a graph which is
related to the PCLSM using the super-level set expression. The
proposed method is faster than the Ishikawa’s graph cut
method [28] due to some special structures of this graph.

� A continuous max-flow algorithm is proposed to further over-
come two main drawbacks of the discrete graph cut method:
one of the drawbacks of the discrete method is that the isotro-
pic TV cannot be applied, but it can be employed in our method;
the other one is that it is impossible to exactly penalize the
length of the boundary for the multiphase segmentation in
the discrete method, but the proposed method can do this.
These two improvements ensure that one can get some better
segmentation results from our algorithm. Compared to the Dar-
bon’s [29] discrete graph cut method, we proposed a continuous
max-flow algorithm to overcome the drawbacks of the discrete
method. Compared to some existing continuous methods, the
proposed algorithm uses K � 1 super-level set functions to par-
tition K classes, which reduces the number of unknown vari-
ables, so providing a computationally very efficient algorithm.
In addition, we use K dual variables to keep the regularization
term in the model to be the exact length of the boundary in
the continuous dual model, experimental results have shown
that this can significantly improve the quality of the segmenta-
tion results.
� We give some mathematical analysis on the proposed algo-

rithm, and show that the binary solutions of our algorithm
can be obtained by a convex relaxation and a thresholding step,
which corresponds to give a binary solution for the Potts model
under a certain condition.

The rest of the paper is organized as follows: Section 2 gives
some backgrounds on multi-phase segmentation methods; in Sec-
tion 3, we introduce the proposed method, including the model,
the algorithms and related analysis; Section 4 contains some
experimental results; finally, some conclusions and discussions
are presented in Section 5.

2. Related works

The generic problem of image segmentation is to partition an
image domain X into K non-overlapping regions Xk such that
X ¼ [K

k¼1Xk. The well-known Potts model for image segmentation
is to minimize the energy

EPotts Xkf gK
k¼1

� �
¼
XK

k¼1

Z
Xk

dkðxÞdxþ l
XK

k¼1

j@Xkj; ð1Þ

such that [K
k¼1Xk ¼ X and Xi \Xj ¼ ; if i – j, where j@Xkj stands for

the perimeter of the boundary of Xk and l > 0 is a parameter. Here
the first term is the data term, and each dk should depend on the
input image I. For example, dkðxÞ ¼ jIðxÞ � ckjk; k ¼ 1;2 represents
that the pixels are classified in terms of the intensity means
fckgK

k¼1. The second term, namely the regularization term, measures
the sum of the perimeters of the sets Xk; k ¼ 1; . . . ;K . When k ¼ 2
and fckgK

k¼1 are unknown, (1) coincides with the energy of the piece-
wise constant Mumford–Shah model [1]:
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By introducing a vector-valued characteristic function
wðxÞ ¼ ðw1ðxÞ; . . . ;wKðxÞÞ with component functions

wkðxÞ ¼
1; x 2 Xk;

0; x R Xk;

�
the Potts model (1) can be reformulated as

EPottsðwÞ ¼
XK

k¼1

Z
X

dkðxÞwkðxÞdxþ l
2
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Z
X
jrwkðxÞjdx; ð3Þ
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