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a b s t r a c t

Dimensionality reduction is an important tool and has been widely used in many fields of data mining
and machine learning. Intrinsic dimension of data sets is a key parameter for dimensionality reduction.
In this paper, a new intrinsic dimension estimation method based on geometrical relationship between
manifold intrinsic dimension and data neighborhood geodesic distances is presented. The estimator is
derived by manifold sampling assumption. On a densely sampled manifold, the number of samples that
fall into a ball is equal to the volume times the density of the ball. The radius of the ball is calculated by
graph distance which is approximation of geodesic distance on manifold. Then the intrinsic dimension is
estimated on each sample. Experiments conducted on synthetic and real world data set show that the
performance of our new method is robust and comparable to other works.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Many objects in our world can be electronically represented as
high-dimensional data, such as speech signals, images, videos,
digital text documents and so on. Due to the limitation of compu-
tational resources and storage space, it is too complicated or too
unstable to be feasible to process those data directly by regular
systems. In order to process high-dimensional data, dimensionality
reduction techniques become crucial [1]. Many techniques have
been proposed to reduce dimensionality. Basically these
techniques could be classified into two groups: linear methods
and nonlinear methods. Linear methods, such as principal compo-
nent analysis (PCA) [2], multidimensional scaling (MDS) [3], linear
discriminant analysis (LDA) [4] and random projection [5], perform
dimensionality reduction by embedding the data into a subspace of
lower dimensionality. Nonlinear methods, such as locally linear
embedding (LLE) [6], ISOMAP [7], Laplacian Eigenmaps (LE) [8],
maximum variance unfolding (MVU) [9], local tangent space align-
ment (LTSA) [10], Hessian locally linear embedding (HLLE) [11] and
diffusion maps (DM) [12], assume that the data settled resides on a
low-dimensional nonlinear manifold.

However, all of these techniques require the user to specify the
dimension of the Euclidean space into which the data will be

mapped, and this dimension is called target dimension. Choosing
it too small may result in the loss of significant information, whereas
choosing it too large may obscure the underlying structure. Perhaps
the first fundamental question one would ask is ‘‘what is the true, or
intrinsic, dimension of this data?’’ Knowing the intrinsic dimension
(ID) of the data will clearly facilitate further applications of dimen-
sionality reduction methods and thus obtain meaningful low-
dimensional representations of the data. The role of this procedure
in data processing system is shown in Fig. 1.

There are many definitions of the dimension of a set, some are
more compelling than others, that have been used to study com-
plex geometric shapes. Unfortunately, these definitions are not
consistent with one another. Therefore, the selection of a single
definition among these competing options is a crucial choice that
must be made before any further progress. Intuitively, intrinsic
dimensionality is the minimum number of parameters that is
necessary in order to account for all the information in the data
[13]. In more general terms, following Fukunaga [28], a data set
X # RD is said to have Intrinsic dimensionality (ID) equal to d
if its elements lie entirely within an d-dimensional subspace of
Rd (where d < D). Many estimators of the ID come from fractal
geometry. In our work, the data set is modeled by the theory of
manifold geometry. A connected topological manifold is locally
homeomorphic to Euclidean d-space, and the number d is called
the manifold’s dimension which can be defined as intrinsic
dimension of data set.
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2. Previous work on intrinsic dimension estimation

A great deal of research work has been devoted to the develop-
ment of algorithms to estimate the intrinsic dimensionality of a
data set [14]. Traditional methods for intrinsic dimension estima-
tion include PCA, which determines the ID by the number of eigen-
values greater than a given threshold. However, if the data points
concentrate around a nonlinear manifold, PCA may not obtain the
intrinsic dimension correctly. Recently, there has been a surge of
interest in geometric methods, which focus on the fractal-based
techniques. Of these techniques, correlation dimension and packing
dimension are particularly prominent. If one has n identically inde-
pendent distributed samples x1, x2, . . ., xn from some domain
X # RD, then the correlation dimension dC of a data set is defined as

dC ¼ lim
r!0

lnðCðrÞÞ
lnðrÞ

where C(r) is correlation integral which defined as

CðrÞ ¼ lim
n!1

2
nðn� 1Þ

Xn

i¼1

Xn

j¼iþ1

Iðkxj � xik � rÞ

Here, r is radius to be set as a positive number. I( � )is an indicator
function which can be defined as:

Ið�Þ ¼
1 kxj � xik � r
0 kxj � xik > r

�

Then the ID can be obtained by plot ln r versus ln C(r) and estimate
the slope of the linear portion of the plot. This approach is first used
by Grassberger and Procaccia [15]. Since the Grassberger–Procaccia
algorithm performs badly on sets of high dimensionality, Camastra
and Vinciarelli developed an empirical method which is the modifi-
cation of the Grassberger–Procaccia algorithm [16]. The advantage
of the correlation dimension is that it can be straightforwardly
and quickly calculated. However, it also has disadvantage, that is,
it will severely underestimate the ID under non-uniform distribu-
tion of the manifold. To tackle this drawback, Kégl defined packing
dimension, and using packing numbers rather than covering num-
bers to improve the computational efficiency [17]. The packing
dimension dP of a data set is defined as

dP ¼ �lim
r!0

lnðMðrÞÞ
lnðrÞ

where M(r) is the maximum number of data points that can be cov-
ered by a single hyper sphere with radius r.

In 2004, Costa and Hero [26,27] estimate the intrinsic dimension
of a manifold using a global method based on minimal spanning
trees of geodesic graphs (GMST). A similarity matrix based on the
geodesic distances between all points is constructed and then a min-
imal spanning subgraph is computed. Then the intrinsic dimension
is estimated from the subgraph using a method-of-moments tech-
nique. Define Nk(xi) to be the set of k nearest neighbors of xi, They
prove that the total edge length of the K-NN graph is then given by

L ¼
Xn

i¼1

X
xj2NkðxiÞ

jjxj � xijja ¼ n
d�a

d c þ e

where 0 < a < d is a parameter controlling locality, c is a constant
not depending on the data distribution, and e is an error residual

that goes to zero a.s. as n ?1. By applying this technique in local
neighborhoods, they extend the method to give local dimension
estimates.

There are other estimating methods in literature. For example,
Levina and Bickel used a Poisson process to model the number of
samples landing in a ball around data point xi, and then the ID
can be estimated by maximum likelihood principle [18]. The
estimator proceeds as follows:

dMLE ¼
1
n

Xn

i¼1

1
k� 2

Xk�1

j¼1

log
LkðxiÞ
LjðxiÞ

" #�1

where Lk(xi) is the Euclidean distance from the fixed point xi to its
kth nearest neighbor.

Farahmand et al. estimated the dimension locally around the
data points using the nearest neighbor method and then combined
these local estimates together [19]. By decomposing the sample data
into locally linear low-dimensional patches, Brand [29] proposed a
heuristic estimate of dimension based on the local geometric
relations in the manifold. Raginsky and Lazebnik [30] introduced a
technique for dimensionality estimation based on the notion of
quantization dimension, which connects the asymptotic optimal
quantization error for a probability distribution on a manifold to
its intrinsic dimension. Haro et al. extended the maximum likeli-
hood method by developing a translated Poisson mixture model
[20]. Fan et al. proposed an ID estimator which derived by finding
the exponential relationship between the radius of an incising ball
and the number of samples included in the ball [21]. Mordohai
and Medioni estimated geometric relationships by tensor voting
from the perspective of instance-based learning, then the ID at each
point can be found as the maximum gap in the eigenvalues of the
tensor [22]. Most existing ID estimators generally underestimated
ID when its value is sufficiently high, so Rozza et al. presents two
ID estimators based on the statistical properties of manifold neigh-
borhoods to reduce this effect [23].

In this paper the data points can be viewed as points
constrained to lie on a low-dimensional manifold embedded in a
higher dimensional space. The intrinsic manifold dimension will
be estimated based on the geometric properties of the data distri-
bution. This paper is organized as follows. Section 3 introduces a
new intrinsic dimension estimation method based on graph dis-
tance neighborhood system under manifold assumption. Section 4
illustrates the behavior of the proposed approach in different
situations and Section 5 makes some concluding remarks.

3. Proposed method

3.1. Geometric property based on manifold assumption

The intrinsic dimension of a data set depends on the global
manifold on which samples of the data set locates. Assume that
the data set X = {x1, x2, . . ., xn} � RD locally and uniformly distrib-
uted on an underlying d-dimensional manifold M � RD(d < < D). If
x1, x2, . . ., xn are independent identically distributed samples from
a density f(x) in Rd, and Lk(xi) is the Euclidean distance from a fixed
point xi to its kth nearest neighbor in the sample, then the follow-
ing geometric property can be inferred
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Fig. 1. The process of data analysis.
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