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We present a bandlet-based framework for video inpainting in order to complete missing parts of a video
sequence. The framework applies spatio-temporal geometric flows extracted by bandlets to reconstruct
the missing data. First, a priority-based exemplar scheme enhanced by a bandlet-based patch fusion gen-
erates a preliminary inpainting result. Then, the inpainting task is completed by a 3D volume regulariza-
tion algorithm which takes advantage of bandlet bases in exploiting the anisotropic regularities. The
method does not need extra processes in order to satisfy visual consistency. The experimental results
demonstrate the effectiveness of our proposed video completion technique.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Missing parts in still images and video sequences may be caused
by damages or deliberately undesired object removal from the
images or the video frames. The image/video inpainting problem
has attracted a great attention in the past few years due to its pow-
erful ability in fixing and restoring damaged saptial/spatio-tempo-
ral data. In this paper, we focus on video inpainting as a technique
to recover missing data in some specified regions of videos. Due to
the large dimensionality of video data coupled with its saptio-tem-
poral consistency which must be preserved, video inpainting can be
considered as a challenging task even though large amount of data
can be highly desirable to fill-in the missing regions.

One can refer to [1] for detailed mathematical interpolation
models specialized in image inpainting. The pioneering work in
digital inpainting [2]| employs non-linear partial differential equa-
tions (PDEs) as an interpolation platform to perform image and vi-
deo frame inpainting. The concepts of PDEs and interpolation in
inpainting have been employed in many techniques, including
[3] which derives a third-order PDE based on Taylor expansion to
propagate the border isophotes to the missing regions. An explicit
extension of the technique introduced in [2] is presented in [4]
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which applies Navier-Stoke equations. This approach applies ideas
from classical fluid dynamics to continuously propagate isophote
lines of the image from the exterior into the inpainting zone. As an-
other technique, the proposed video inpainting scheme in [5] ben-
efits from discrete p-Laplacian regularization on a weighted graph.
Despite their promising results, the PDE and interpolation based
methods perform frame-by-frame completion that neglects the
continuity across consecutive frames unless PDEs are adapted in
a 3D scheme [6]. Moreover, these methods are appropriate only
for narrow and small missing regions.

The concept of priority in image inpainting introduced in [7] has
been adopted in various video inpainting approaches. In these
techniques, a correct order of filling-in process leads to a high per-
formance in the completion task. Important properties, such as
availability, trackability and motion vectors of the pixels, and geo-
metric properties contribute to the calculation of the priority of the
missing regions to be filled-in first. For instance, the method intro-
duced in [8] performs moving object segmentation to separate the
background and foreground of the video. Hence, the search space is
reduced for completion of partially occluded moving objects [9]. In
this method a motion confidence value is used to find the priority
of the filling-in area in order to maintain the temporal consistency
in the foreground completion task. For the background completion
step, the image inpainting technique introduced in [7] is adopted.
Modifications based on analysis of continuities on stationary and
non-stationary videos are carried out to find the best priority in
[10]. Then, in [11] the technique is further improved for various
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camera motions by keeping the track of similar regions. The prior-
ity is determined based on the trackability of the pixels in the
method introduced in [12]. The highest priority fragment around
the boundary of the missing region is completed using a graph-
cut fragment updating instead of copying just a similar texture
from the undamaged region. In [13] a priority-based method con-
siders the video completion task as a global search optimization in
order to find the best match. The whole video is considered as a
volume and a multi-scale scheme is employed to reduce the com-
putation time. Motion layer segmentation is the key step in the
method proposed in [14]. Each separate layer is completed using
the image inpainting method, and then all the layers are combined
in order to restore the final video. A two phase sampling and align-
ment video inpainting technique is introduced in [15]. The method
predicts motion data in the foreground, then missing moving fore-
ground pixels are reconstructed by spatio-temporal alignment of
the sampled data. Then, the background inpainting is done by 3D
tensor voting as an extension of the still image repairing technique
introduced in [16]. The methods in [17,18] proposed to inpaint vid-
eos by transferring sampled motion fields from the available parts
of the video. The latter method tracks patches containing missing
regions in the adjacent frames by employing a global motion
estimation scheme. In [19,20] 3D patch-based probability models
with potential applications in video inpainting are introduced.
The probability model introduced in [19] is an alternative for mo-
tion models such as optical-flow. A sparsity-based prior for a var-
iational Bayesian model is defined for video sequences. The
damaged portion of a video can be treated in this Bayesian frame-
work as an inpainting task. A learning strategy in [20] on the vi-
deo’s 3D space-time patches leads to video epitomes. Epitomes
are viewed as a set of 3D arrays of probability distributions applied
for video reconstruction. Although the preliminary results of video
inpainting using these methods are promising, they need more
improvements to be able to deal with large missing portions.
Maintaining the visual consistency along with handling the
large dimensionality of videos in the inpainting process is an
important fact. No wonder we see complicated steps in the state-
of-the-art techniques, such as segmentation of different motion
layers or objects, foreground/background separation, tracking,
optical-flow mosaics computation and so onto cope with spatio-
temporal consistency. In this paper we propose an approach that
takes advantage of the bandlets sparse representation to recon-
struct missing data visually pleasingly. Image sparse representa-
tion methods were introduced for spatial inpainting problems
[21-23]. In such methods, missing pixels are inferred by adaptively
updating the sparse representation (e.g. wavelets, DCT, etc).
Although these approaches are very challenging to be adapted to
video completion that deals with unsound and damaged estimated
motion vectors, they yield satisfactory results in the case of image
inpainting. Apparently, employing an efficient sparse representa-
tion can enhance the inpainting results. The main motivation
behind employing the bandlet domain is due to its effective capa-
bility in capturing the geometric properties of an image as an effi-
cient sparse representation [24]. The captured geometric features
are used in our technique to firstly blend the results of patch
matching in order to keep the visual consistency. Secondly, the
overall bandlet geometry of the frames can be a good prior if we
consider the video inpainting as an ill-posed linear problem. The
obtained overall geometry is used for sparse regularization to
reconstruct the video. In our method, making distinction between
static camera videos and sequences containing camera motions is
not needed. Besides, there is no segmentation, tracking or complex
motion estimation as applied in many of the previously discussed
methods to facilitate the inpainting process. This is the main differ-
ence with our previous work [25] that relies on an accurate back-
ground/foreground segmentation in order to treat videos captured

by static and moving cameras in different fashions by patch match-
ing rather than bandlet-based patch fusion and 3D regularization.

The rest of this paper is organized as follows. Section 2 describes
the idea behind the bandlet transform capability in reconstructing
missing regions. Then, the proposed bandlet-based video inpainting
method is presented in Section 3. In Section 4, the experimental re-
sults are provided. Finally, Section 5 concludes this paper.

2. Using bandlets in inpainting

The bandlet framework can achieve an effective geometric rep-
resentation of texture images. It is essential in sparse regulariza-
tion and spatial or spatio-temporal data reconstruction for digital
inpainting purposes.

Although geometric regularity along image edges is an aniso-
tropic regularity, conventional wavelet bases can only exploit the
isotropic regularity on square domains. An image can be differen-
tiable in the direction of the tangent of an edge curve even though
the image may be discontinuous across the curve. Bandlet trans-
form [26] exploits such anisotropic regularity. Bandlet bases con-
struct orthogonal vectors elongated in the direction of the
maximum regularity of a function. The earlier bandlet bases
[27,28] have been improved by a multi-scale geometry defined
over wavelet coefficients [29,30]. Indeed, bandlets are anisotropic
wavelets warped along the geometric flow.

Considering the Alpert transform as a polynomial wavelet trans-
form adapted to an irregular sampling grid, one can obtain vectors
that have vanishing moments on this irregular sampling grid. This
is the principal need to approximate warped wavelet coefficients.
Only a few vectors of Alpert basis can efficiently approximate a vec-
tor corresponding to a function with anisotropic regularity. This
bandletization using wavelet coefficients is defined as

b (%) = > ara[plvf, (). (1)
p

where j and k represent wavelet scale and orientation, respectively.
The a,,[p] are the coefficients of the Alpert transform where [ is the
scale and n is the index of the Alpert vector. In essence, a;,[p] are the

coordinates of the bandlet function bj’-“,‘n. These coefficients strictly

depend on the local geometric flow. Bandlet coefficient are gener-
ated by inner products <f, bj’-“,'n> of the image f with the bandlet

functions bj’f_,_n. The set of wavelet coefficients are segmented in

squares S for polynomial flow approximation of the geometry. For
each scale 2 and orientation k, the segmentation is carried out
using a recursive subdivision in dyadic squares. A square S should
be further subdivided into four sub-squares, if there is still a geo-
metric directional regularity in the square. Apparently, only for
the edge squares, the adaptive flow is needed to be computed to ob-
tain the bandlet bases. The geometry of an image evolves through
scales. Therefore, for each scale 2/ of the orientation k a different
geometry Fj’f is chosen. The set of all geometries {1"]’.‘} represents
the overall geometry of an image. Each member of this set is in fact
a geometry value associated to one segmentation square S. For de-
tails about bandlets the reader is referred to [26].

The image inpainting problem may be formulated as follows. An
image I contains a set of missing pixels indicated by Q and a source
(® =1\ Q) area. The goal is finding an image I such that f(x) is equal
to I(x) for the pixels that belong to @, i.e., I(x) = I(x) Vx ¢ Q while
the overall geometry of [ has the same geometrical regularity as
that of I in ®@. In the presence of additive noise w we have the image
fwith missing pixels as f = 0l + w where

Ql(x):{o ifxecQ

I(x) ifxed. @
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