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a b s t r a c t

We consider the problem of image recognition via two-dimensional random projection and nearest
constrained subspace. First, image features are extracted by a two-dimensional random projection. The
two-dimensional random projection for feature extraction is an extension of the 1D compressive sam-
pling technique to 2D and is computationally more efficient than its 1D counterpart and 2D reconstruc-
tion is guaranteed. Second, we design a new classifier called NCSC (Nearest Constrained Subspace
Classifier) and apply it to image recognition with the 2D features. The proposed classifier is a generalized
version of NN (Nearest Neighbor) and NFL (Nearest Feature Line), and it has a close relationship to NS
(Nearest Subspace). For large datasets, a fast NCSC, called NCSC-II, is proposed. Experiments on several
publicly available image sets show that when well-tuned, NCSC/NCSC-II outperforms its rivals including
NN, NFL, NS and the orthonormal ‘2-norm classifier. NCSC/NCSC-II with the 2D random features also
shows good classification performance in noisy environment.

� 2014 Published by Elsevier Inc.

1. Introduction

For most practical pattern recognition scenarios, feature extrac-
tion and classification methods are equally important. Feature
extraction should retain most if not all of the useful information
in the data while keeping the dimension of the features as low as
possible. A careful choice of features is required to achieve low
complexity in the classifier and a high accuracy in classification.

1.1. Compressive sampling

Recent developments of compressive sampling (CS) theory give
us clues for new methods of feature extraction. Namely, if the spar-
sity of the data is appropriately harnessed, then the data can be
highly compressed by an underdetermined random projection
(defined by a full rank random matrix whose row number is less
than its column number), to achieve a sampling rate even lower
than the classical Nyquist rate without any information loss. The
original data can be exactly recovered from the highly compressed
measurements by the ‘1-norm minimization techniques [1–9].

More specifically, let x 2 RD be a j-sparse (j < D) vector, i.e., x
has at most j nonzero entries, and let U 2 Rd�D ðd < DÞ be a
matrix, whose entries are Gaussian distributed (or more generally,
Restricted Isometry Property compatible). Then x can be com-
pressed as follows.

x̂ ¼ Ux ð1Þ

where x̂ 2 Rd is the vector of CS measurements.
Given x̂ and U, there are an infinite number of vectors x that sat-

isfy Eq. (1). However, it has been proved that if d P Oðj log D
j

� �
Þ,

then with overwhelming high probability

p P 1� exp Oð�dÞ ð2Þ

x can be exactly recovered from x̂ by minimizing the ‘0-norm of x as
follows [1,2].

x� ¼ argmin
x2RD

xk k0 subject to x̂ ¼ Ux ð3Þ

where x� is the recovered version of x.
Because the optimization problem of Eq. (3) is NP-hard, the

recovery of x is equivalently reformulated as the ‘1-norm
minimization problem as follows.

x� ¼ argmin
x2RD

xk k1 subject to x̂ ¼ Ux ð4Þ
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This problem can be solved by algorithms such as Basis Pursuit
[10] or Orthogonal Matching Pursuit [11].

Since the data dimension can be efficiently reduced without sig-
nificant information loss, the above mentioned projection tech-
nique serves as a tool for feature extraction. Mathematical
analyses show that compressive recognition, detection and other
processings in compression domain Rd are feasible [12–20].

Note that the above mentioned projection technique is applied
to vectors. For image data which are naturally represented by
matrices, the 1D representation discards structural information
about the image.

Due to this concern, different 2D (matrix) representations are
exploited for feature extraction. For example, the 2D representa-
tion methods include 2DPCA [21] and its variants [22–24],
2DLDA [25], bilinear subspace learning [26,27], tensor analysis
[28–31], and the recent common interest in 2D random
projection [32–34].

Among the 2D representations, either supervised or unsuper-
vised, 2DPCA, 2DLDA and bilinear subspace learning, etc., are
obtained by deterministic two-dimensional projection. Another
category of 2D representation include those obtained by random
linear projection[32–34]. Both categories are actually the
order-two tensor analyses, which exploit the correlations among
image pixels with different dimensions and in this sense is
believe to lead to good classification performance for different
applications such as image recognition and human gait
recognition [28–31].

1.2. NN, NFL and NS

Besides the feature extraction, classifier design is equally
important. Classical but still popular subspace-based classifiers
include NN (Nearest Neighbor), NFL (Nearest Feature Line, pro-
posed by Li et al. [35]) and NS (Nearest Subspace).

NN, NFL and NS share some common traits and can be summa-
rized in a generalized way — given a query sample y and n training
samples belonging to K classes, NN, NFL and NS all use on the same
strategy to determine the class of y as follows.

riðyÞ ¼min
x2Mi

ky � xk2; 8i ¼ 1; . . . ;K

classðyÞ ¼ argmin
i2f1;...;Kg

riðyÞ

8><
>: ð5Þ

where riðyÞ is the distance of y to class i and Mi is a classifier-spe-
cific dataset defined by training set i.

Denoting the ith training set by Xi ¼ xð1Þi ; . . . ;xðniÞ
i

n o
, in NN, Mi

is the i-th training set itself, namely

Mi ¼ Xi ð6Þ

In NFL, Mi is a set of feature lines defined by Xi, namely,

Mi ¼ axðaÞ þ ð1� aÞxðbÞja 2 R; xðaÞ;xðbÞ 2 Xi
� �

ð7Þ

In NS, Mi is the linear subspace spanned by xð1Þi ; . . . ;xðniÞ
i . Denote

the matrix whos columns are the training samples of the ith class
by

Ai ¼ xð1Þi ; . . . ; xðniÞ
i

h i
ð8Þ

then, in NS, Mi can be written as follows.

Mi ¼ Aiaja 2 Rnif g ð9Þ

It follows from Eqs. (6)–(9), that in all cases we have Xi # Mi.
For notation convenience, we respectively denote the training sup-
erset Mi of NN, NFL and NS as MNN

i ;MNFL
i and MNS

i . It is not difficult

to see that MNN
i �MNFL

i �MNS
i . Since MNS

i is a linear subspace and
MNN

i and MNFL
i are just the appropriate subsets of it, we call MNN

i

and MNFL
i the constrained subspaces for the ith class.

1.3. NM and its relationship to NN, NFL, NS

In NM (Nearest Manifold), it is assumed that the data of a class
lie on or near to a manifold, and that the dimension of the manifold
is much less than the dimension of the feature space.

NM uses the same strategy of Eq. (5) to classify y with

Mi ¼Mi; i ¼ 1; . . . ;K: ð10Þ

where Mi is the data manifold of the ith class.
If suitable manifolds for all i ¼ 1; . . . ;K can be found, then NM

has a high classification accuracy.
Note that Mi in Eqs. (6), (7) and (9) can be viewed as different

approximations to Mi for the ith class. From this perspective, we
contend that NN, NFL and NS are all approximations to NM and
propose later a novel classifier, called NCSC (Nearest Constrained
Subspace Classifier), and show by experiments that NCSC is a bet-
ter approximation to NM than NN, NFL and NS.

1.4. Contributions of this study

Based on our previous work [34], we discuss the technique of
2DCS (two-dimensional compressive sampling), which is inspired
by 1DCS (traditional compressive sampling) and 2DPCA [21]. The
2D (matrix based) approach is computationally less complex than
the 1D (vector based) approach to image data. The reconstruction
of the original data is still guaranteed with a high probability. In
this sense, 2DCS is more efficient than 1DCS for feature extraction.
Our experiments show that when 2DCS features are exploited by
some state-of-the-art classifiers, the performance of image recog-
nition is improved.

This interest is somehow shared almost at the same time by
Eftekhari et al. [32] and Leng et al. [33]. Although addressing the
same problem, the focuses of Eftekhari et al. [32] and Leng et al.
[33] and ours are different. Besides the theoretical analysis of 2D
random projection and the assumption that 2D signal is sparse,
Eftekhari et al. reported a reconstruction algorithm of 2D sparse
signal based on smoothed ‘0-norm minimization. A reconstruction
method of natural images (not explicitly sparse) and the problem
of designing a cutting-edge classifier exploiting the 2D random
projection features were not addressed in [32]. On the other hand,
in [33], 2D random projection and its variations combined with
PCA, LDA etc., were studied and compared with other feature
extractors but without mention of the problems of 2D reconstruc-
tion and classifier design.

In our work, we propose a two-steps (including row process-
ing and column processing) 2DCS reconstruction scheme for
natural images via TV minimization. We also propose a classi-
fier called NCSC (Nearest Constrained Subspace Classifier) and
its fast version called NCSC-II, in which the subspace associated
with the target class is constrainedly spanned by training sam-
ples. The constrained subspace is a union of a series of affine
hulls.

We prove that NCSC is a generalized version of NN (Nearest
Neighbor), NFL (Nearest Feature Line) and has a close relationship
with NS (Nearest Subspace). Employing the intrinsic dimension as
a freedom degree parameter, the constrained subspace, rather than
the unconstrained one, is believed to be a more accurate approxi-
mation to the data manifold. The intrinsic dimension of the con-
strained subspace in NCSC is defined by a ‘0-norm sparse
representation, and NCSC itself is in fact an approximation to the
conceptual NM (Nearest Manifold) classifier, which is believed to
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