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The problem of separation of style and content is an essential element of visual perception, and is a fundamental
mystery of perception. This problem appears extensively in different computer vision applications. The problem
we address in this paper is the separation of style and content when the content lies on a low-dimensional
nonlinear manifold representing a dynamic object. We show that such a setting appears inmany humanmotion
analysis problems.We introduce a framework for learning parameterization of style and content in such settings.
Given a set of topologically equivalent manifolds, the Homeomorphic Manifold Analysis (HMA) framework
models the variation in their geometries in the space of functions that maps between a topologically-
equivalent common representation and each of them. The framework is based on decomposing the style
parameters in the space of nonlinear functions that map between a unified embedded representation of
the content manifold and style-dependent visual observations. We show the application of the framework
in synthesis, recognition, and tracking of certain human motions that follow this setting, such as gait and
facial expressions.

© 2012 Published by Elsevier B.V.

1. Introduction

The problem of separation of style and content is an essential ele-
ment of visual perception and is a fundamental mystery of perception
[1,2]. For example, we are able to recognize faces and actions under
wide variability in the visual stimuli. While the role of manifold rep-
resentations in perception is still unclear, it is clear that images of the
same object lie on a low-dimensional manifold in the visual space
defined by the retinal array. On the other hand, neurophysiologists
have found that neural population firing is typically a function of a
small number of variables, which implies that population activities
also lie on low-dimensional manifolds [1].

In this paper we consider the visual manifolds of biological motion.
Despite the high dimensionality of the configuration space, many
human motions intrinsically lie on low-dimensional manifolds. This
is true for the kinematics of the body, as well as for the observed mo-
tion through image sequences. Let us consider the observed motion.
For example, the silhouette (occluding contour) of a human walking
or performing a gesture is an example of a dynamic shape, where the
shape deforms over time based on the action being performed. These

deformations are restricted by the physical body and the temporal
constraints posed by the action being performed. Given the spatial
and the temporal constraints, these silhouettes, as points in a high-
dimensional visual input space, are expected to lie on a low-
dimensional manifold. Intuitively, the gait is a one-dimensional
manifold that is embedded in a high-dimensional visual space. This
was also shown in [3,4]. Such a manifold can be twisted and even
self-intersect in the high-dimensional visual space. Similarly, the ap-
pearance of a face performing expressions is an example of a dynamic
appearance that lies on a low-dimensional manifold in the visual input
space.

Although the intrinsic body configuration manifold might be very
low in dimensionality, the resulting visual manifold (in terms of shape
and/or appearance) is challenging to model, given the various aspects
that affect the appearance. Examples of such aspects include the body
type (slim, big, tall etc.) of the person performing the motion, clothing,
viewpoint, and illumination. Such variability makes the task of learning
a visual manifold very challenging, because we are dealing with data
points that lie on multiple manifolds at the same time: body configura-
tion manifold, viewpoint manifold, body shape manifold, illumination
manifold, etc.

The main contribution of this paper is a novel computational
framework for learning a decomposable generativemodel that explic-
itly factorizes the intrinsic body configuration (content), as a function
of time, from the appearance (style) factors. The framework we pres-
ent in this paper is based on decomposing the style parameters in the
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space of nonlinear functions that maps between a unified represen-
tation of the content manifold and style-dependent observations.
Given a set of topologically equivalent manifolds, the Homeomorphic
Manifold Analysis (HMA) framework models the variation in their
geometries in the space of functions that maps between a topologically-
equivalent common representation and each of them. The common
representation of the content manifold can be learned from the data
or can be enforced in a supervised way if the manifold topology is
known. Themain assumption here is that the visualmanifold is homeo-
morphic to the unified content manifold representation, and that the
mapping between that unified representation and the visual space can
beparameterized by different style factors.Wedescribe themotivations
and contributions of the framework inmore detail within the context of
the state-of-the-art in Section 2.

The learned models support tasks such as synthesis and body
configuration recovery, as well as the recovery of other aspects such
as viewpoint, person parameters, etc. As direct and important appli-
cations of the introduced framework, we consider the cases of gait
and facial expressions. We show an application of the framework to
gait analysis, where the model can generate walking silhouettes for
different people from different viewpoints. Given a single image or a
sequence of images, we can use the model to solve for the body config-
uration, viewpoint, and person shape style parameters. We also show
the application of the framework to facial expressions as an example
of a dynamic appearance. In this case, we learn a generative model
that generates different dynamic facial expressions for different people.
Themodel can successfully be used to recognize expressions performed
by different people who are not used in model training, as well as iden-
tifying the person performing the expression.

The paper organization is as follows, Section 2 discusses the relation
between the proposed framework and the state-of-the-art. Section 3
summarizes the framework and its applications. Section 4 describes
different ways to obtain a unified content manifold representation, in
both unsupervised and supervised ways. Section 5 describes the details
for learning the factorized model. Section 6 describes algorithms for
solving for multiple factors. Section 7 shows experimental results and
examples of applying the model for dynamic shape and appearance
manifolds, for the analysis of gait and facial expressions.

2. Relation to state-of-the-art

This section puts the contributions of the paper in the context of
the state-of-the-art in related areas.

2.1. Factorized models: Linear, bilinear, and multi-linear models

Linear models, such as PCA [5], have been widely used in appear-
ance modeling to discover subspaces for appearance variations. For
example, PCA has been used extensively for face recognition, such
as [6–9], and to model the appearance and view manifolds for 3D ob-
ject recognition, as in [10]. Subspace analysis can be further extended
to decompose multiple orthogonal factors using bilinear models and
multilinear tensor analysis [11,12]. The pioneering work of Tenenbaum
and Freeman [11] formulated the separation of style and content using a
bilinear model framework [13]. In that work, a bilinear model was used
to decompose face appearance into two factors: head pose and different
people as style and content interchangeably. They presented a compu-
tational framework for model fitting using SVD. Bilinear models have
been used earlier in other contexts [13,14]. A bilinear model is a special
case of a more general multilinear model. In [12], multilinear tensor
analysis was used to decompose face images into orthogonal factors
controlling the appearance of the face including geometry (people), ex-
pressions, head pose, and illumination using High Order Singular Value
Decomposition (HOSVD) [15]. Tensor representation of image data was
used in [16] for video compression, and in [17] for motion analysis and
synthesis. N-mode analysis of higher-order tensors was originally pro-
posed and developed in [13,18,19] and others. The applications of bilin-
ear and multilinear models to decompose variations into orthogonal
factors, as in [11,12], are mainly for static image ensembles.

The question we address in this paper is how to separate the style
and content on a manifold representing a dynamic object. Why don't
we just use a bilinear model to decompose the style and content in
this case, where certain body poses can be denoted as content and
different people as style? The answer is that in the case of dynamic
(e.g. articulated) objects, the resulting visual manifold is nonlinear.
This can be illustrated by considering the example walking cycle in
Fig. 2. In this case, the shape temporally undergoes deformations and
self-occlusion, which results in a nonlinear manifold. The two shapes
in the middle of the two rows correspond to the farthest points in the
walking cycle kinematically, which are supposedly the farthest points
on the manifold, in terms of the distance along the manifold. In the
Euclidean visual input space, these two points are very close to each
other, as can be noticed from the distance plot on the right of Fig. 2.
Because of such nonlinearity, PCA, bilinear, and multilinear models
will not be capable of discovering the underlying manifold and
decomposing the orthogonal factors. Linear models will not be able
to interpolate intermediate poses and/or intermediate styles.

Fig. 1. Style and content factors. Content: gait motion or facial expression. Style: different silhouette shapes or face appearance.
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