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a b s t r a c t

Image fusion can produce a single image that describes the scene better than the individual source image.
One of the keys to image fusion algorithm is how to effectively and completely represent the source
images. Morphological component analysis (MCA) believes that an image contains structures with differ-
ent spatial morphologies and can be accordingly modeled as a superposition of cartoon and texture com-
ponents, and that the sparse representations of these components can be obtained by some specific
decomposition algorithms which exploit the structured dictionary. Compared with the traditional multi-
scale decomposition, which has been successfully applied to pixel-level image fusion, MCA employs the
morphological diversity of an image and provides more complete representation for an image. Taking
advantage of this property, we propose a multi-component fusion method for multi-source images in this
paper. In our method, source images are separated into cartoon and texture components, and essential
fusion takes place on the representation coefficients of these two components. Our fusion scheme is ver-
ified on three kinds of images and compared with six single-component fusion methods. According to the
visual perceptions and objective evaluations on the fused results, our method can produce better fused
images in our experiments, compared with other single-component fusion methods.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The abilities of the imaging devices to capture the information
are different from one to another; even the capture emphasis of
the same image device also varies with the imaging environments.
Therefore, multiple images of one scene may be acquired by differ-
ent image sensors, under different optic conditions or at different
times. Many applications, such as clinical medicine, military sur-
veillance, molecular biology and remote sensing, need a single
composite image that can provide more comprehensive descrip-
tions of the scene, compared with the individual source image; this
goal can be achieved by image fusion, which fuses the complemen-
tary or salient information of the multiple source images [1]. Image
fusion can be performed at pixel-level, feature-level and decision-
level [2,3]. Pixel-level fusion, pixel by pixel or region by region, se-
lects or combines the information of the source images, according
to some fusion criteria, to construct the fused image. Feature-level
fusion performs its fusion by using some extracted features. Deci-
sion-level fusion forms the fused image by considering the image
descriptions such as relational graphs [4,5]. Currently, most of
the fusion algorithms are pixel-level. Pixel-level fusion can be per-
formed in either spatial domain or transformed domain. In the spa-
tial domain, pixels or regions are directly selected, according to

some salience measures, and combined in either a linear or
non-linear way to form the fused image. The most successful spa-
tial-domain-fusion algorithms include intensity-hue saturation
transform method [6,7], weighted average method, principal com-
ponent analysis method [8], independent component analysis
method [9] and Brovey transform method [10]. In the transformed
domain, a certain frequency or time–frequency transform is used
to fuse images. Of all transformed-domain-fusion methods, multi-
scale transform method is the most frequently-used one. Classic
multiscale transforms include pyramid decomposition such as
Laplacian pyramid (LP) [11], morphological pyramid (MP) [12]
and gradient pyramid (GP) [13], wavelet transform methods such
as discrete wavelet transform (DWT) [14–16], dual-tree complex
wavelet transform (DTCWT) [17], and stationary wavelet trans-
form (SWT) [18], and multiscale geometry analysis such as curvelet
transform (CVT) [19,20], ridgelet transform [21], and nonsubsam-
pled contourlet transform (NSCT) [22–25]. All these multiscale
transform based fusion methods need to perform the following
steps [16,26,27].

1. Perform the forward transform on the source images to obtain
their multiscale representations (transform coefficients with
different scales and directions).

2. Combine these multiscale representations to obtain the fused
multiscale coefficients, according to the fusion rules designed
for certain purposes.
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3. Perform the inverse-transform over the combined multiscale
coefficients to obtain the fused result.

The completeness and effectiveness of the transformed repre-
sentations for the underlying information of the source images
are crucial to the fusion quality [3,13]. All methods mentioned
above view the whole image as a single component. In this way,
there may be a limit with respect to representing the inherent
information of images completely. If an image is decomposed into
multiple components, the presentations of the image content
would be more effective and more complete. Morphological com-
ponent analysis (MCA) [28] can decompose an image into two
components. Next, we discuss the advantages of MCA, from the
perspective of the completeness and effectiveness.

(1) Completeness: In the multiscale transform, the transform
bases are constructed to reveal the salient features of an image;
once the transform bases are given, the transform coefficients of
an image are accordingly determined and represent salient fea-
tures of this image [26]. However, each multiscale transform has
its own merits and demerits because it uses a limited dictionary
(explanation in Section 2.1) to perform its operation. For example,
wavelets, ridgelet bases and discrete cosine transform (DCT) bases
are appropriate to reveal image details, lines and periodic textures,
respectively, but none of them can simultaneously capture two or
more features [3]. Therefore, there is no single transform which is
optimal to completely represent all features because the content of
an image is often complex and contains structures with different
spatial morphologies. Morphological diversity assumes that an im-
age can be described as the sum of multiple components. In [29],
one real image is decomposed into two components: a cartoon im-
age and a texture map. The cartoon image describes the piecewise
smooth changes in the illumination or the salient parts, as well as
edges. The texture map delivers the texture information in the re-
gions enclosed by edges. MCA [28] can also separate an image into
cartoon and texture components and thus provides more complete
representation for the content of an image. Some applications of
MCA are image inpainting [30], image super-resolution [31] and
image denoising [32].

(2) Effectiveness: The sparse representation uses an overcom-
plete dictionary, whose number of columns is greater than that
of rows, and models an image of 1-D representation as the linear
combination of columns (atoms) [33]; if the columns are selected
appropriately, the combination coefficients would be sparse.
Regardless of whether such an overcomplete dictionary is implicit
(this kind of dictionary consists of several transform bases) or ex-
plicit (this kind of dictionary is comprised of some non-parametric
trained dictionaries), it should be rich. A dictionary, via its richness,
may reveal the salient features of an image more effectively than
the traditional transform base. The overcompleteness enables
sparser representation to reflect the common image features. Some
classic applications of the sparse representation are face recogni-
tion [34], image super-resolution [35] and image denoising
[36,37]. MCA also exploits the sparse representation to decompose
an image into the cartoon and texture parts.

Exploiting the property of morphological diversity of images
and the advantages of MCA, we propose a novel multi-component
fusion method in this paper. The core idea of the proposed method
is that fusing multiple components (cartoon and texture) could
outperform fusing a single component. We structure the following
content of this paper as follows. Next section briefly introduces the
sparse representation technique and reviews how to decompose an
image with MCA. Section 3 presents the image fusion scheme
based on MCA, including the fusion algorithm flow and fusion rule.
Section 4 discusses the detailed experimental settings and analyses
experimental results. Section 5 draws conclusions and puts for-
ward our future work.

2. Decomposing an image with MCA

2.1. Sparse representation

In the sparse representation framework, a dictionary U = [u1,
. . . , uT] is viewed as an N � T matrix. When T > N or even T� N,
the dictionary is overcomplete and is constructed by merging sev-
eral dictionaries. An image x 2 RN (an image with N pixels can be
expressed as a lexicographically ordered 1-D vector) is modeled
as the linear combination of M(M < T) elementary atoms of the dic-
tionary, according to Eq. (1).

x ¼ Ua ¼
X
i2IM

a½i�ui ð1Þ

where a[i] is the representation coefficients of x; IM is the subset of
{1, � � � , T} and Card(IM) = M; ui represents the atoms of U. Obviously,
from Eq. (1), x has many candidate representations. The sparsest
one is the objective of the representation. Thus, the sparse
representation problem need to solve the following minimization
problem:

min
a2RM
jjajj0 s:t: x ¼ Ua: ð2Þ

The complexity of the problem formulated in Eq. (2) exponentially
grows with the number of columns of the dictionary because the
problem is nonconvex. For reducing the complexity, the nonconvex
l0 sparsity measure is substituted by the l1-norm [38]. Thus, Eq. (2)
evolves into a tractable convex optimization problem Eq. (3), which
can be solved with basis pursuit (BP) [39] algorithm.

min
a2RM
kak1 s:t: x ¼ Ua: ð3Þ

2.2. Morphological component analysis

In [28], the authors expatiate the morphological component
analysis (MCA) that can acquire the sparse multi-component rep-
resentations of an image. MCA seeks for these presentations of
an image x based on two assumptions. One assumes that x can

be modeled as the sum of K components x ¼
PK

k¼1xk

� �
, and that

each component xk looks morphologically different. The other as-
sumes that the representation coefficients of xk are sparse in a gi-
ven dictionary Uk, but nonsparse in other dictionaries Uk0–k

(called mutual incoherence). Generally, K = 2. x1 contains the tex-
ture only, while x2 contains the cartoon only. x1 and x2 are sparsely
represented in U1 and U2, respectively, but nonsparsely repre-
sented in U2 and U1, respectively. For the clarity of reading, the
subscript ‘1’ is rewritten as ‘T’ abbreviation for ‘texture’, and ‘2’
as ‘C’ abbreviation for ‘cartoon’. For an arbitrary image x, to seek
for the sparse representations of both texture and cartoon compo-
nents over the combined dictionary containing both UT and UC,
one needs to solve

faopt
T ;aopt

C g ¼ arg min
faT ;aCg

kaTk1 þ kaCk1 s:t: x ¼ UTaT þUCaC ð4Þ

where aC and aT are the representation coefficients for cartoon and
texture components, respectively. In [40], considering that the first
assumption may not be well satisfied, for instance, image contain-
ing additive noise, Eq. (4) evolves into Eq. (5) by relaxing the con-
straint in Eq. (4).

aopt
T ;aopt

C

� �
¼ arg min

faT ;aCg
kaTk1 þ kaCk1 þ kkx�UTaT �UCaCk2

2 ð5Þ

where k is the scalar factor. Eq. (5) can be efficiently solved by using
the iterative block-coordinate relaxation (BCR) [41] method. Fig. 1
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