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a b s t r a c t

This paper proposes a novel spatial and spectral fusion method for satellite multispectral and hyperspec-
tral (or high-spectral) images based on dictionary-pair learning. By combining the spectral information
from sensors with low spatial resolution but high spectral resolution (LSHS) and the spatial information
from sensors with high spatial resolution but low spectral resolution (HSLS), this method aims to gener-
ate fused data with both high spatial and spectral resolution. Based on the sparse non-negative matrix
factorization technique, this method first extracts spectral bases of LSHS and HSLS images by making full
use of the rich spectral information in LSHS data. The spectral bases of these two categories data then
formulate a dictionary-pair due to their correspondence in representing each pixel spectra of LSHS data
and HSLS data, respectively. Subsequently, the LSHS image is spatial unmixed by representing the HSLS
image with respect to the corresponding learned dictionary to derive its representation coefficients. Com-
bining the spectral bases of LSHS data and the representation coefficients of HSLS data, fused data are
finally derived which are characterized by the spectral resolution of LSHS data and the spatial resolution
of HSLS data. The experiments are carried out by comparing the proposed method with two representa-
tive methods on both simulation data and actual satellite images, including the fusion of Landsat/ETM+
and Aqua/MODIS data and the fusion of EO-1/Hyperion and SPOT5/HRG multispectral images. By visually
comparing the fusion results and quantitatively evaluating them in term of several measurement indices,
it can be concluded that the proposed method is effective in preserving both the spectral information and
spatial details and performs better than the comparison approaches.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

A specific feature of remote sensing images, captured from dif-
ferent satellites and different sensors, is a tradeoff between spatial
resolution and spectral resolution. This is caused, on the one hand,
by the system tradeoffs related to data volume and signal-to-noise
ratio (SNR) limitations and, on the other hand, by the specific
requirements of different applications for a high spatial resolution
or a high spectral resolution. For example, to fulfill the high spatial
resolution requirement in many land-oriented applications,
sensors with spatial resolution of half meter to tens of meters are
designed, including, but not limited to, ETM+(30 m) on a platform
of Landsat, the sensor on QuickBird (2.4 m for multispectral bands),
and the instruments on SPOT (2.5 m–10 m). Sensors like the MOD-
erate resolution Imaging Spectroradiometer (MODIS) on-board
Aqua or Terra, the MEdium Resolution Imaging Spectrometer
(MERIS) on-board ENVISAT, and the Hyperion instrument on-board

the EO-1 satellite, can provide remote sensing images with high
spectral resolution but with low spatial resolution. Although these
remote sensing instruments have many different properties, such
as the revisit period, the swath width, the purpose of the launch
(commercial or science), a specific user can obtain large amounts
of data from different instruments on a given study area. This pro-
motes the development of new algorithms to obtain remote sens-
ing data with the best resolution available by merging their
complementary information.

From the application point of view, remote sensing data with
high spatial resolution are beneficial for the interpretation of satel-
lite images and the extraction of spatial details of land cover, such
as in land use/cover mapping and change detection [1]; whereas
remote sensing data with high spectral resolution are capable of
identifying those targets that cannot be easily distinguished by hu-
man eyes, such as in geological analysis and chemical contamina-
tion analysis [2]. To merge panchromatic (with a higher spatial
resolution) and multispectral (with a lower spatial resolution)
images from the same or separate sensors, pansharpening algo-
rithms have been extensively studied in the past two decades
[3,4]. In this paper, we focus on the fusion of images from two
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categories of sensors: one category has low spatial resolution and
high spectral resolution (hereinafter abbreviated as LSHS), such
as Aqua (or Terra)/MODIS and EO-1/Hyperion; while the other cat-
egory has high spatial resolution but low spectral resolution (here-
inafter abbreviated as HSLS), the data from which are usually
termed as multispectral images, such as Landsat/ETM+ and
SPOT5/HRG. The low resolution or high resolution herein is in a rel-
ative sense. Through integrating the spectral information of LSHS
data and the spatial information of HSLS data, we expect to extend
the applications of available satellite images, thereby meeting var-
ious demands of data users.

To address this spatial and spectral fusion problem, one
category of classic method is spatial-unmixing-based algorithms
[5–9]. The processing steps of these methods are: (1) geometrical
co-registration between the HSLS and LSHS images; (2) the multi-
spectral classification on the high spatial resolution image (HSLS)
to unmix the low spatial resolution image (LSHS); and (3) determi-
nation of the class spectra via regularized linear unmixing. These
methods showed good performance at fusing Landsat images with
MERIS [6,7,9] images or with ASTER [8] images for land applica-
tions. However, it should be noted that whether pure spectra exist
resides in the sensor’s spatial resolution of the given HSLS data.
These methods also have high demanding on the geometric regis-
tration accuracy of the given data (e.g., less than 0.1–0.2 of the low
resolution pixel size according to Ref. [5]). The authors in [10–12]
proposed to fuse multispectral and hyperspectral images in a max-
imum a posteriori (MAP) estimation framework by establishing an
observation model between the desired image and the known
image. The method reported in [10] employed a spatially varying
statistical model to help exploit the correlations between multi-
spectral and hyperspectral images. The methods developed in
[11,12] made use of a stochastic mixing model of the underlying
scene content to enhance the spatial resolution of hyperspectral
image. The authors in [13] proposed to improve the spatial resolu-
tion of hyperspectral image by fusing with high resolution pan-
chromatic band images based on super-resolution technique.
Firstly, this method learns the spatial information from panchro-
matic images by sparse representation; then the high-resolution
hyperspectral image is constructed based on the learned spatial
structures with a spectral regularization.

Due to the low spatial resolution or the existence of homoge-
nous mixtures in the hyperspectral images, unmixing techniques
are needed to decompose the mixed pixels observed into a set of
constituents and the corresponding fractional coefficients, which
denote the proportion of each constituent [14]. The first step in this
spectral unmixing task is to collect a suitable set of endmembers to
model the spectra of measured pixels by weighting these spectral
signatures. There are two categories of endmembers according to
different extraction methods: image endmember derived directly
from the images and library endmember derived from known tar-
get materials in field or laboratory spectra [15]. However, employ-
ing library endmembers is risky because it is difficult to ensure that
these spectra are captured under the same physical conditions as
the observed data. Whereas image endmembers can avoid this
problem due to the collection at the same scale as the observed
data, thereby being linked to the scene features more easily [14].
A number of endmember extraction algorithms for hyperspectral
data were quantitatively compared in [15]. In this paper, we em-
ploy this similar endmember extraction strategy for both HSLS
and LSHS data and term the extracted spectral bases as dictionar-
ies. For the second step of abundances estimation in hyperspectral
unmixing, a popular and effective method is sparse unmixing [16].
The basic principle of this method is based on the observation that
only a small portion of endmembers participated in the formation
of each mixed pixel. Therefore, with the sparsity-inducing regular-
izers, i.e., the constraint of a few non-zero components for the

abundance vectors, the abundances can be estimated by calling
for linear sparse regression techniques [16]. In this paper, we adopt
this similar sparse regularization when solving the representation
coefficients of HSLS and LSHS data with respect to their represen-
tation atoms (or dictionaries).

In this paper, we seek to extract a dictionary-pair for represent-
ing LSHS and HSLS data, respectively. Specifically, the representa-
tion atoms of LSHS and HSLS data are firstly extracted from the
given images, respectively, and then to form the dictionary-pair.
Each representation atom of the dictionary-pair herein is in corre-
spondence. Accordingly, each pixel spectra of LSHS and HSLS data
can be expressed as a linear combination of their corresponding
dictionary atoms, which have the same functions as endmembers
in hyperspectral unmixing. Based on this dictionary-pair, the pro-
posed spatio-spectral fusion algorithm consists of two stages: in
the first stage, the good spectral properties of the LSHS image are
employed to extract the basis functions of spectra (representation
atoms) and further to form the dictionary-pair by enforcing the
same representation coefficients of the HSLS and the LSHS images
with respect to their dictionaries; in the second stage, the good
spatial properties of the HSLS image are utilized to derive the
representation coefficients with respect to its dictionary. The rep-
resentation coefficients herein have similar functions as abun-
dances in hyperspectral unmixing but provide spatial location
properties due to the high spatial resolution of the HSLS image. Fi-
nally, the desired high spatial and high spectral resolution image
can be obtained by the multiplication of representation atoms for
the LSHS image (i.e., the LSHS dictionary) and representation coef-
ficients for the HSLS image.

The following section presents the theoretical basis of this pa-
per. Section 3 describes the proposed method for the fusion of HSLS
and LSHS data. Section 4 shows the experimental validation of the
proposed algorithm through comparison with two representative
algorithms on both simulated and actual satellite datasets. Finally,
we conclude this paper with a discussion on the application of the
proposed method and remarks about its inherent features.

2. Theoretical basis

As introduced in Section 1, a dictionary-pair needs to be trained
from the HSLS and LSHS data. Hence, the basic principles of dictio-
nary-pair learning will first be introduced. Taking the non-negative
properties of the bases spectra and fractional abundances of HSLS
and LSHS data into account, we learn the required dictionary-pair
by using sparse non-negative matrix factorization method, which
will be presented in the second part of this section.

2.1. Dictionary-pair learning

Huge amounts of information captured by human eyes or satel-
lite sensors are superfluous in a large part caused by the related
signals in real world and the oversampling of sensors. Compared
to the observed signals, the underlying generating signals actually
have very small dimensions. Identifying the generating signals
from the relevant information is, in fact, a dimension reduction
process or finding the subspace where the data lie [17]. The
combination of these generating signals or bases of subspace con-
stitutes the dictionary, each component of which is a representa-
tion atom for the observed dataset. Given the observed data,
building the dictionary to provide efficient representations for
the given signals, is the dictionary learning process, which has
greatly promoted the development of novel dictionary learning
algorithms [17–19].

For representation convenience, we will use the superscript of
symbols to discriminate variables and the subscript to denote the
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