

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 9261–9265

The asymmetric hydrogenation of 2-phenethylacrylic acid as the key step for the enantioselective synthesis of Citralis Nitrile[®]

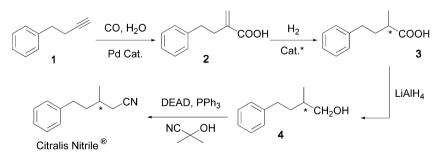
Alberto Scrivanti,* Sara Bovo, Alessandra Ciappa and Ugo Matteoli

Dipartimento di Chimica, Università di Venezia, Dorsoduro, 2137, 30123 Venice, Italy

Received 3 August 2006; revised 25 October 2006; accepted 25 October 2006

Abstract—A catalytic approach to the enantioselective synthesis of Citralis Nitrile[®] (3-methyl-5-phenyl-pentanenitrile, a citrus-type odorant) is described. The key step is the transition-metal catalyzed asymmetric hydrogenation of 2-phenethylacrylic acid. Among the different catalysts tested, the most efficient appears to be the one formed by combining in situ [Ru(benzene)Cl₂]₂ with the atropisomeric diphosphine MeOBIPHEP and triethylamine, which allows us to obtain enantiomeric excesses up to 98% under mild conditions. Very good results (ees >80%) have also been obtained using iridium cationic complexes in combination with a phosphinooxazoline ligand.

© 2006 Elsevier Ltd. All rights reserved.


Citralis Nitrile[®] (3-methyl-5-phenyl-pentanenitrile) (Scheme 1) is a citrus-type odorant marketed as racemate by Aroma and Fine Chemicals (AFC).¹

Even if today many synthetic fragrances are traded as racemates, it often occurs that the opposite enantiomers of a fragrance may induce quite different sensorial reactions, that is, have a different scent.² Accordingly, there is practical interest in developing preparative routes which selectively lead to the single stereomers of a fragrance.^{3,4} In fact, if the two enantiomers have different olfactory activity, the use of the enantiomerically pure or of an enantiomerically enriched fragrance will provide unique odour properties, different from those of the racemate; further motivation in the use of enantio-

merically enriched fragrances arises from economical and environmental concerns.

Spurred by our interest in developing practical synthetic routes to enantiomerically enriched fragrances,^{5,6} we wish to report here a catalytic process (Scheme 1) for the enantioselective synthesis of Citralis Nitrile[®]. In this connection, it is worth mentioning that the enantiomers of Citralis Nitrile[®] were prepared with ee up to 70% by Pfaltz through a cobalt catalyzed asymmetric reduction of (*E*)- or (*Z*)-3-methyl-5-phenyl-pent-2-enenitrile with NaBH₄.⁷

Carbonylation of but-3-ynyl-benzene 1 (Aldrich) in the presence of the Pd(OAc)₂/2-pyridyldiphenylphosphine/

Scheme 1. Asymmetric synthesis of Citralis Nitrile[®].

Keywords: Acrylic acids; Enantioselective hydrogenation; Atropisomeric diphosphine; Ruthenium; Iridium; Fragrance chemistry; Citralis Nitrile[®]. * Corresponding author. Tel.: +39 041 2348903; fax: +39 041 2348967; e-mail: scrivanti@unive.it

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.10.129

methanesulfonic acid catalytic system^{8,9} gives phenethylacrylic acid **2** in a 92% yield.¹⁰ Asymmetric hydrogenation of **2** in the presence of a chiral transition-metal catalyst leads to enantiomerically enriched acid **3**. Then, the reduction of **3** to the corresponding alcohol **4** followed by a Mitsunobu type reaction¹¹ affords Citralis Nitrile[®].

The above synthesis of acrylic acid 2 is particularly convenient because it does not only afford the olefin in a high yield, but also with a complete regioselectivity. This is of paramount importance because it is known that the metal catalyzed asymmetric hydrogen addition on isomeric olefins often gives opposite enantiomers.^{6,12}

The most challenging step is the asymmetric hydrogenation of acrylic acid **2**. As a matter of fact, inspection of the literature reveals that while the asymmetric hydrogenation of α -arylacrylic acids and of disubstituted or trisubstituted acrylic acids has received much attention,^{13–17} there are few studies dealing with the hydrogenation of acrylic acids bearing as the only substituent an aliphatic chain in α position, such as **2**.^{18,19}

The asymmetric hydrogenation of olefin **2** was first carried out in the presence of an iridium-based catalyst (**Ir-PHOX**, Fig. 1) containing the chiral ligand 2-(*o*-diphenylphosphinophenyl)-3-*tert*-butyloxazoline, which has been shown by Pfaltz to be able to provide very high asymmetric inductions in the hydrogenation of a wide variety of unfunctionalized olefins.²⁰

Preliminary experiments carried out at 100 °C under 50 atm of hydrogen showed that under these conditions the carbon–carbon double bond is quantitatively hydrogenated furnishing acid **3** with a fairly good enantio-selectivity (66% ee, see Table 1).²¹

On lowering the reaction temperature at 60 or 30 °C, the substrate conversion remains complete, but the enantioselectivity does not increase. More adversely, when the reaction temperature is further lowered, the asymmetric induction drops dramatically. A decrease of the enantioselectivity on lowering the reaction temperature is quite unusual; however, it seems to be somewhat peculiar when using catalysts such as **Ir-PHOX** since an alike behaviour has been reported by Pfaltz.²³ No product racemization occurs as shown by an experiment carried out over 24 h (entry 6 of Table 1).

On decreasing the hydrogen pressure the asymmetric induction increases (Table 2) whatever the reaction temperature; the effect is stronger at lower temperatures;

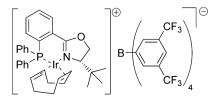


Figure 1. Ir-PHOX

Table 1. Hydrogenation of 2 with of Ir-PHOX: influence of the temperature $^{\rm a}$

_			
Entry	<i>T</i> (°C)	<i>t</i> (h)	ee ^b (%)
1	100	2	66 ^c
2	60	2	66° 66° 64° 46° 27°
3	30	2	64 ^c
4	0	2	46°
5	-20	2	27°
6	30	24	66 ^c

^a Reaction conditions. Substrate: 0.57 mmol; cat.: 2.27×10^{-2} mmol; solvent: dichloromethane (15 mL); *P*(H₂): 50 atm; in all the experiments the substrate conversion is complete.

^b The ees were determined by chiral GLC (on the methyl ester using Chiraldex G-TA column).

^c Configuration of the prevailing enantiomer: (*R*) by polarimetry see Ref. 22.

thus, it appears that the hydrogen pressure is the most important parameter in determining the asymmetric induction (e.g., compare entries 4, 7 and 10 in Table 2).

This behaviour is in keeping with the Pfaltz's observation that terminal olefins react with a higher enantioselectivity at lower hydrogen pressures.²⁴

Aiming at broadening our investigations with other transition-metal catalysts some experiments were carried out in the presence of the commercially available [Rh(COD)(S)-BINAP]⁺ClO₄⁻·THF (Aldrich).

Unfortunately, preliminary tests carried out in CH_2Cl_2 at 23 °C under 20 atm of hydrogen showed that while the hydrogenation proceeds with acceptable rates, no asymmetric induction is obtained.

The best results were obtained with a ruthenium catalytic system prepared in situ²⁵ by reacting [Ru(benzene)Cl₂]₂ with a chiral atropisomeric diphosphine (ligand:complex = 2:1 molar ratio) (see Table 3).

Indeed, the hydrogenation of **2** in the presence of the $[Ru(benzene)Cl_2]_2/(S)$ -BINAP catalyst at 0 °C and

Table 2. Hydrogenation of 2 with Ir-PHOX: effect of the hydrogen \ensure{a}

F				
Entry	<i>T</i> (°C)	$P(\mathrm{H}_2)$ (atm)	ee ^b (%)	
1	60	100	61 ^c	
2	60	50	66 [°]	
3	60	10	76 [°]	
4	60	2	81 ^c	
5	30	50	64 ^c	
6	30	10	79 [°]	
7	30	2	80 [°]	
8	0	50	46 ^c	
9	0	10	75°	
10	0	2	80 [°]	

^a Reaction conditions. Substrate: 0.57 mmol; cat.: $2.27 \times 10^{-2} \text{ mmol}$; solvent: dichloromethane (15 mL); time: 2 h; in all the experiments the substrate conversion is complete.

^b The ees were determined by chiral GLC (on the methyl ester using Chiraldex G-TA column).

^c Configuration of the prevailing enantiomer: (*R*) by polarimetry see Ref. 22.

Download English Version:

https://daneshyari.com/en/article/5287766

Download Persian Version:

https://daneshyari.com/article/5287766

Daneshyari.com