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a b s t r a c t

In this paper, we introduce the Vector Rank M-type L (VRML)-filter to remove impulsive noise from color
images and video sequences. The proposed filter uses the Median M-type (MM) and Ansari–Bradley–
Siegel–Tukey M-type (AM) estimators into L-filter to provide robustness to proposed filtering scheme.
We also introduce the use of impulsive noise detectors to improve the properties of noise suppression
and detail preservation in the proposed filtering scheme in the case of low and high densities of impulsive
noise. Simulation results indicate that the proposed filter consistently outperforms other color image
filters by balancing the trade-off between noise suppression, detail preservation, and color retention.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Have been investigated different algorithms to noise suppres-
sion in multichannel images during the last decade. Particularly,
nonlinear filters applied to color images have been designed to pre-
serve edges, details and chromaticity properties, while suppresses
impulsive noise [1,2]. Nonlinear filtering techniques apply robust
order statistics theory that is the basis for design of the different
novel approaches in digital multichannel processing [3]. These
algorithms have demonstrated good ability in removing of impul-
sive noise, preserving the fine image details, as well in chromatic
properties of the filtered color image [4–7].

In this paper, we introduce the Vector Rank M-type L (VRML)-
filter to remove impulsive noise from color images and video color
sequences. This filter utilizes vector approach and the Median
M-type (MM) and Ansari–Bradley–Siegel–Tukey M-type (AM) esti-
mators [8,9] with simple cut and Andreẃs sine influence functions
[8] in the filtering scheme of L-filter to obtain sufficient noise sup-
pression for each channel of RGB color image. We also introduce
the use of impulsive noise detectors to improve the properties of
noise suppression and detail preservation in the proposed filtering

scheme in the case of low and high densities of impulsive noise. To
demonstrate the performance of the proposed filtering scheme in
real applications, we applied it for filtering of Ku and UHF band
SAR (Synthetic Aperture Radar) images, which naturally have
speckle noise. Simulation results in impulsive degradation indicate
that the proposed filter consistently outperforms other color image
filters used as comparative by balancing the trade-off between
noise suppression, detail preservation, and color retention.

2. Rank M-type estimators

The Rank M-type estimators are based on the R-estimators and
M-estimators. The R-estimators form a class of nonparametric
robust estimators based on rank calculations [8,10]. In the case of
absence of any a priori information about a probability distribution
and data moments the most powerful rank test is the median. If the
probability density function is a symmetrical one, the Wilcoxon test
of signed ranks is asymptotically the most powerful one and it
determines the Wilcoxon order statistics estimator [8,10,11]. These
order statistics tests could be used to construct different robust
order statistics estimators too.

The Ansari–Bradley–Siegel–Tukey estimator hA is given by,

hA ¼MED
i6j
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where X(i) and X(j) are elements with rank i and j, respectively, and N
is the size of sample. This estimator is constructed using the median
(upper form in the right side in Eq. (1)) and Wilcoxon (lower form in
the right side in Eq. (1)) estimators and it combines the properties
of these order statistics tests providing more robustness [9].

Huber proposed the M-estimators as a generalization of
Maximum Likelihood Estimators (MLE) [8,10]. M-filters are simply
M-estimators of the location parameter needed in filtering applica-
tions. The estimation of the location parameter can be found by
using

PN
i¼1wðXi � hÞ ¼ 0, where h is a location parameter. The ro-

bust M-estimator solution for h is determined by imposing certain
restrictions on the influence function w(X) or the samples Xi � h,
called censorization or trimming. The standard technique for the
M-estimator assumes the use of Newton’s iterative method that
can be simplified by a single-step algorithm to calculate the
lowered M-estimate of the average h value [8,10]

hM ¼
PN

i¼1Xi
~wðXi �MEDf~XgÞPN

i¼11½�r:r�ðXi �MEDf~XgÞ
ð2Þ

where MEDf~Xg is the median of elements contained in vector~X and ~w
is the normalized function w: wðXÞ ¼ X ~wðXÞ. It is evident that Eq. (2)
represents the arithmetic average of

PN
i¼1wðXi �MEDf~XgÞ, which is

evaluated on the interval [�r,r]. The parameter r is connected with
restrictions on the range of w(X), for example, in the case of the sim-
plest Huber’s limiter type M-estimator for the normal distribution
having heavy ‘tails’ ~wrðXÞ ¼minðr;maxðX; rÞÞ ¼ ½X�r�r [8,10]. Hampel
proved different influence functions to derive the function ~wðXÞ by
cutting the outliers off the primary sample [10].

The proposal to enhance the robust properties of M-estimators
and R-estimators by using the R-estimates consists of the proce-
dure similar to the median average [8,9],

hMM ¼MEDfXi
~wðXi �MEDf~XgÞ; i ¼ 1; . . . ;Ng ð3Þ
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where hMM and hAM are the Median M-type (MM) and Ansari–
Bradley–Siegel–Tukey M-type (AM) estimators, respectively. The
Median M-type (MM) estimator (3) is the usual median when the
function ~w is represented by the simplest Huber’s limiter type M-esti-
mator. Eqs. (3) and (4) can be also applied for 2D signals (images).

The R- and M-estimators are well-known robust estimators of
location and they have already been used in image processing
applications resulting in the so-called R- and M-filters. We can
mention some properties of these filters [10,11]:

The median filter is preferred when the observation data have
long-tailed distributions. It is very suitable for the removal of
impulsive noise, a median having window dimension N = 2m + 1
can reject up to m impulses proving a correct reconstruction.
The median filter has good edge preservation properties; it can
be easy proven that, if the filter window is symmetric about
the origin and includes the origin, the corresponding median filter
preserves any step edge. A special case of R-filters is called Wilco-
xon filter, it has been proven effective in the filtering of white
additive Gaussian noise. However, it does not preserve edges as
well median filter does. The reason for this is that every possible
pair is averaged.

The properties of M-filters depend on the choice of the function
w(x). The influence function of an M-estimator shows the influence
of an additional observation on the estimate. The influence function
gives information about the effect of an infinitesimal contamination
(outlier) at point x 2 X, i.e., it offers local information. For example,
the Huber estimator, and the corresponding M-filter can reject up

to 50% of outliers. The Huber estimator tends to the median when
r tends to zero, because in this case the estimator tends to the
sign(x) function. It also tends to the arithmetic mean when r tends
to infinity. Therefore the M-filter is a compromise between the
median and the average filters. Impulsive noise can be effectively
filtered because the M-filter is a robust estimator of location and
it limits the influence of very large or very small observations.

Finally, according to the properties described above, in Eqs. (3)
and (4) the R-(median) estimator provides good properties of
impulsive noise suppression and detail preservation, and the Wil-
coxon estimator suppresses the white additive Gaussian noise; and
the M-estimator uses different influence functions according to the
scheme proposed by Huber to provide better robustness in the case
of impulsive noise suppression, for these reasons it can be expected
that the robust properties of MM- and AM-estimators can exceed
the robust properties of the base R- and M-estimators. In recent
works we demonstrated the robust properties of these RM (MM
and AM)-estimators in comparison with R- and M-estimators
[8,9,12].

3. Proposed Vector Rank M-type L-filter

The proposed Vector Rank M-type L (VRML)-filter combines the
use of L algorithm and the robust Rank M-type (RM) estimators [13].

The following representation of Vector L-filter is often used,

hVL ¼
XN

k¼1

ak � Y ðkÞ ð5Þ

where Y(k) is an ordered data sample from a digital multichannel
image that may be an RGB color image, ak ¼

R k=N
ðk�1Þ=N hðkÞdk=R 1

0 hðkÞdk are the weighted coefficients, and hðkÞ is the probability
density function.

Table 1
Comparative restoration results for 20% impulsive noise for ‘‘Lena’’ color image.

Algorithm PSNR MAE MCRE NCD

VM 21.15 10.73 0.035 0.038
a-TM 20.86 14.97 0.046 0.049
BVD 20.41 12.72 0.043 0.045
GVD 20.67 11.18 0.038 0.040
AGVD 22.01 11.18 0.028 0.036
GVDF_DW 22.59 10.09 0.028 0.039
MAMNFE 22.67 9.64 0.027 0.035
VMMKNN (S) 23.15 10.00 0.033 0.034
VMMKNN (A) 23.07 10.01 0.033 0.035
FASVM 24.80 5.00 0.025 0.017
SWVD 24.30 6.37 0.017 0.022
VMML (S,E,ND) 24.90 7.81 0.032 0.033
VMML (S,L,ND) 25.81 6.49 0.026 0.016
VMML (S,U,ND) 25.88 5.53 0.026 0.026
VMML (S,E,D) 26.13 3.36 0.024 0.027
VMML (S,L,D) 26.46 2.90 0.023 0.027
VMML (S,U,D) 26.47 2.79 0.023 0.025
VMML (A,E,ND) 22.65 12.32 0.034 0.040
VMML (A,L,ND) 25.88 7.00 0.026 0.015
VMML (A,U,ND) 26.52 5.36 0.022 0.015
VMML (A,E,D) 25.25 4.48 0.030 0.023
VMML (A,L,D) 26.59 3.00 0.022 0.029
VMML (A,U,D) 26.73 2.74 0.021 0.025
VAML (S,E,ND) 24.85 7.79 0.032 0.033
VAML (S,L,ND) 26.05 6.32 0.025 0.015
VAML (S,U,ND) 25.99 5.47 0.025 0.024
VAML (S,E,D) 25.86 3.61 0.025 0.027
VAML (S,L,D) 26.54 2.89 0.023 0.026
VAML (S,U,D) 26.68 2.71 0.023 0.025
VAML (A,E,ND) 22.30 12.21 0.035 0.040
VAML (A,L,ND) 25.90 6.91 0.026 0.015
VAML (A,U,ND) 26.56 5.38 0.022 0.015
VAML (A,E,D) 25.01 4.46 0.031 0.024
VAML (A,L,D) 26.27 3.09 0.023 0.029
VAML (A,U,D) 26.52 2.80 0.022 0.026
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