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a b s t r a c t

In this paper, the connections between information geometry and performance of sensor networks for
target tracking are explored to pursue a better understanding of placement, planning and scheduling
issues. Firstly, the integrated Fisher information distance (IFID) between the states of two targets is ana-
lyzed by solving the geodesic equations and is adopted as a measure of target resolvability by the sensor.
The differences between the IFID and the well known Kullback–Leibler divergence (KLD) are highlighted.
We also explain how the energy functional, which is the ‘‘integrated, differential’’ KLD, relates to the other
distance measures. Secondly, the structures of statistical manifolds are elucidated by computing the
canonical Levi–Civita affine connection as well as Riemannian and scalar curvatures. We show the rela-
tionship between the Ricci curvature tensor field and the amount of information that can be obtained by
the network sensors. Finally, an analytical presentation of statistical manifolds as an immersion in the
Euclidean space for distributions of exponential type is given. The significance and potential to address
system definition and planning issues using information geometry, such as the sensing capability to dis-
tinguish closely spaced targets, calculation of the amount of information collected by sensors and the
problem of optimal scheduling of network sensor and resources, etc., are demonstrated. The proposed
analysis techniques are presented via three basic sensor network scenarios: a simple range-bearing radar,
two bearings-only passive sonars, and three ranges-only detectors, respectively.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Advanced technologies for sensing, computing and networking
create enormous opportunities for handling, gathering and pro-
cessing measurement information via various sensor networks. It
is desirable to assess the performance of a sensor network effec-
tively in many application fields, where the statistical properties
of sensor networks are crucial. Information geometry, which is
gradually gaining significance as it allows the analysis of statistical
properties of sensor networks from a unified perspective, has been
identified as a sophisticated and powerful tool for this purpose
[1,2].

Information geometry is the study of intrinsic properties of
manifolds of probability distributions [2], where the ability of data
to discriminate those distributions is translated into a Riemannian
metric.1 Specifically, the Fisher information provides a local measure

of discrimination of the distributions that translates immediately
into a Riemannian metric on the parameter manifold of the
distributions. The main tenet of information geometry is that many
important notions (e.g. Fisher information, testing, estimation, and
estimation accuracy) in probability theory, information theory and
statistics can be treated as structures (e.g. metric, divergence,
projection, and embedded curvatures) in differential geometry by
regarding the space of probabilities as a differentiable manifold
endowed with a Riemannian metric and a family of affine connec-
tions, including, but not exclusively, the canonical Levi–Civita affine
connection [3]. By providing the means to analyse the Riemannian
geometric properties of various families of probability density
functions, information geometry offers comprehensive results about
statistical models simply by considering them as geometrical
objects.

This geometric theory of statistics was pioneered in the 1940s
by Rao [4], who first interpreted the Fisher information matrix as
a Riemannian metric on the space of probability distributions.
Since then many scholars have contributed to the development
of this theory for statistical models. In 1972, Chentsov in [5] intro-
duced a family of affine connections and proved the uniqueness of
the intrinsic metric and the one-parameter family of affine connec-
tions. Meanwhile, Efron [6] undertook pioneering work in a slightly
different direction. He defined a concept of curvature called
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statistical curvature and described the basic role of curvature in the
high-order asymptotic theory of statistical inference. Since then,
several different groups have brought to maturity the theoretical
framework of statistical geometry. Of particular note is the work
of Amari and his collaborators [3,7,8] who have developed a dual-
ity structure theory and have unified all of these theories in a dif-
ferential–geometrical framework which not only enriches the
theory of information geometry but also provides opportunities
for a wide range of applications. Amari’s major motivation is in
learning of neural networks. Here, we study the theory from a
statistical signal processing perspective.

Information geometry has found many applications in the
asymptotic theory of statistical inference [9], semiparametric sta-
tistical inference [10], the study of Boltzmann machine [11], the
Expectation–Maximization (EM) algorithm [12], and learning of
neural networks [13], all with certain degree of success. In the last
two decades, its application has spanned several discipline areas
such as information theory [14,15], systems theory [16,17], math-
ematical programming [18], and statistical physics [19,20]. It also
played a central role in the multi-terminal estimation theory
[21]. In neuroscience it has been used to extract higher-order inter-
actions among neurons [22]. Many researchers around the world
are applying information geometry to new applications and formu-
lating new interpretations. An example of the former is the deriva-
tion of the intrinsic Cramér–Rao bound for the subspace tracking
problem on manifolds given in [23].

Information geometry can also provide new viewpoints in the
analysis of sensing systems. While important, understanding
information geometry theory is nontrivial. Sensor networks for
target tracking form an important class of information networks.
It is well understood that the performance of target detection
and tracking depends heavily on the sensing ability of the under-
lying sensor network, which may consist of sensors ranging from
large like radars to small like motes. The advances in engineering
and sensing technologies enable more complex sensor networks
to be built for target detection and tracking. The evaluation of
sensor network performance becomes increasingly important, in
particular, for sensor network design, configuration and optimiza-
tion. We believe that information geometry is able to offer ad-
vanced tools to allow us to explore and therefore understand
the structures of sensor systems. This work is motivated to ex-
plore such potential in a simple and sensible way, using basic sen-
sor problems as exemplars.

In our recent work in [24,25], the Integrated Fisher information
distance (IFID) between two targets was approximately calculated
and used to measure target resolvability in the region of interest
covered by a sensor network. Nevertheless, the proposed approxi-
mation for calculating IFID is only valid for closely spaced targets
and the exact IFID must be evaluated by computing the integral
along the geodesic connecting the two target states, which is gen-
erally nontrivial.

In this paper, the connections between information geometry
and the performance of sensor networks for target tracking are ex-
plored in an attempt to gain a better understanding of sensor net-
work measurement issues. The exact calculation of IFID and Ricci
curvatures for the sensor networks with a joint likelihood are pre-
sented and analyzed. The interpretation of the geometry of statis-
tical manifolds for sensor networks is illustrated via the affine
immersion. The analysis is presented via three typical sensor net-
work scenarios: (1) a simple range-bearing radar, (2) two bear-
ings-only passive sonars, and (3) three ranges-only detectors,
respectively. In these scenarios it is shown how information geom-
etry can be used to address system measurement issues such as
evaluating sensor capability to distinguish closely spaced targets,
measuring the amount of information collected by sensors and
solving the problem of optimal scheduling of network sensor and

resources. Although simple synchronized sensor networks with
sensors of the same type are considered in the demonstrative
examples, the analysis method can be applied to a more general
case where dissimilar sensors are involved as long as the likelihood
and Fisher information matrix of the measurement system are
available.

The major contributions of this paper are summarized as below.

1. The IFID between the states of two targets is computed by
solving the geodesic equations and is used to measure the
ability of a sensor network to resolve targets. The differ-
ences between IFID and the well known Kullback–Leibler
divergence are described.The relationship with the energy
functional, which is the integrated differential Kullback–Lei-
bler divergence, and the differences between it and the
other two measures of divergence are described.

2. The structures of statistical manifolds are elucidated by
computing the canonical Levi–Civita affine connection as
well as Riemannian and scalar curvatures. The relationship
between the Ricci curvature tensor field and the amount
of information achievable by the network sensors is
highlighted.

3. An analytical presentation of statistical manifolds as immer-
sions in Euclidean space for the distributions of the expo-
nential family is given.

The rest of the paper is organized as follows. In the next sec-
tion, the problem of interest and the motivations of this work
are described. The principles of information geometry are then
introduced in Section 3. In Section 4, sensor network informa-
tion, as measured by the IFID, is analyzed for three basic types
of sensor network problems; the canonical Levi–Civita affine
connection as well as Riemannian and scalar curvatures are cal-
culated to elucidate the structure of the statistical manifold; an
interpretation of Ricci curvature tensor field related to informa-
tion issues is discussed at the end of this section. The affine
immersions of manifolds corresponding to sensor networks are
presented in Section 5, which is followed by the conclusions in
Section 6.

2. Target tracking in sensor networks

Let target state at time k be denoted as an n dimensional vec-
tor,2 i.e., hk ¼ ½h1;k; � � � ; hn;k�T 2 Rn, where the superscript T is the ma-
trix transpose. Target dynamics are assumed to follow a Markov
process with additive Gaussian noise.

hkþ1 ¼ f ðhkÞ þ vk; vk � Nð0;Q kÞ ð1Þ

where f is the system transition (dynamical) model and vk repre-
sents process noise, which is assumed to be a zero-mean Gaussian
distribution with covariance matrix Qk. The measurement of the
system at time k is modelled as

xk ¼ lðhkÞ þwk; wk � Nð0;CkÞ ð2Þ

where l is the measurement-to-target state space transition func-
tion and wk is the measurement noise approximated by a zero mean
Gaussian distribution with covariance matrix Ck. The problem of
target tracking is to find the posterior probability density of target
state based on a sequence of measurements, i.e., p(hkjx1:k), where
x1:k stands for a sequence of measurements up to time k.

2 In this paper, a symbol in bold face is used to denote a vector and the subscript k
refers to time index. Sometimes, the time index is dropped and the subscript is
subsequently used to index the location of an vector without causing confusion.
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