

Tetrahedron Letters 47 (2006) 8039-8042

Tetrahedron Letters

Facile *N-tert*-butoxycarbonylation of amines using La(NO₃)₃·6H₂O as a mild and efficient catalyst under solvent-free conditions^{\(\preceq\)}, \(\preceq\)

N. Suryakiran, P. Prabhakar, T. Srikanth Reddy, K. Rajesh and Y. Venkateswarlu*

Natural Products Laboratory, Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 3 August 2006; revised 6 September 2006; accepted 15 September 2006 Available online 4 October 2006

Abstract—Facile *N-tert*-butoxycarbonylation of amines is described by the treatment of various primary, secondary, benzylic and aryl amines with di-*tert*-butyl dicarbonate in the presence of catalytic amounts of La(NO₃)₃·6H₂O under solvent-free conditions at room temperature to afford *N-tert*-butylcarbamates in excellent yields.

© 2006 Elsevier Ltd. All rights reserved.

Functional group protection/deprotection strategies are central to target molecule synthesis. The protection of amines is one of the most fundamental and useful transformations in organic synthesis, especially in peptide synthesis.¹ Among the protecting groups for amines, *N-tert*-butoxycarbonylation² is used frequently, because N-tert-butylcarbamates are stable in the presence of a wide range of nucleophiles under alkaline conditions and are very labile under mild acidic conditions liberating the parent amine. ^{1a} Although, various base mediated methods are available for the preparation of N-tertbutylcarbamates using di-tert-butyl dicarbonate, 3-11 there are only a few reports on the Lewis acid catalyzed reactions such as, 'Yttria-Zirconia' which needs long reaction times 3-48 h¹² and, very recently, ZrCl₄, copper(II) tetrafluoroborate, InBr₃ and HClO₄-SiO₂ (Scheme 1).13

In the course of our on-going search for chemoselective reagents, our group has identified La(NO₃)₃·6H₂O as a mild and efficient catalyst for the chemoselective tetrahydropyranylation of primary alcohols, ¹⁴ chemoselective deprotection of acetonides, ¹⁵ synthesis of quinazolinones ¹⁶ and the mild and efficient acetylation

Keywords: La(NO₃)₃·6H₂O; Amines; N-tert-Butoxycarbonylation; Solvent-free conditions.

Scheme 1.

of alcohols, phenols and amines with acetic anhydride.¹⁷ It has been observed that substrates containing other acid labile functional groups such as acetonides, TBDMS ethers, isopropylidene protected diols and *N-tert*-butylcarbamates were intact in the presence of La(NO₃)₃·6H₂O. Further, we report here that La(NO₃)₃·6H₂O is a mild and efficient catalyst for *N-tert*-butoxycarbonylation of amines using di-*tert*-butyl dicarbonate under solvent-free conditions.

The reaction of aniline (1 mmol) with di-tert-butyl dicarbonate (1.2 mmol) using La(NO₃)₃·6H₂O (5 mol %) at room temperature rapidly gave the corresponding *N-tert*-butylcarbamate in a 100% yield (Table 1, entry 1). This success encouraged us to extend the generality of the reaction. In order to establish the scope of the catalytic activity of La(NO₃)₃·6H₂O, we carried out the reaction of various primary, secondary, benzylic and aryl amines (Table 1) with di-tert-butyl dicarbonate, which gave the corresponding *N-tert*-butylcarbamates in excellent yields. Furthermore, it was observed that when the

^{*}Reactions using lanthanum(III) nitrate hexahydrate paper 5.

^{**} IICT Communication No. 060904.

^{*}Corresponding author. Tel.: +91 40 27193167; fax: +91 40 27160512; e-mail: luchem@iict.res.in

Table 1. N-tert-Butoxycarbonylation of amines in the presence of La(NO₃)₃·6H₂O under solvent-free conditions

Entry	Substrate	Product ^a	Time (min)	Yield ^b (%)
1	NH ₂	H O	2	100
2	NH ₂	N O	2	98
3	$Ph \underbrace{\hspace{1cm} N}_{NH_2}$	Ph N N N O	3	95
4	NH O NH	O O	2	100
5	O_2N NH_2	O ₂ N H O	3	95
6	NH ₂	H NO ₂	3	98
7	H ₃ C NH ₂	O_2N	3	98
8	CH ₃ NH ₂	CH ₃ H O	2	100
9	HO NH ₂	HO NO	3	98
10	NH HN	N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0	3	98
11	Ph N	Ph N	3	98
12	HS N NH ₂	Ph N O O		

Download English Version:

https://daneshyari.com/en/article/5288309

Download Persian Version:

https://daneshyari.com/article/5288309

<u>Daneshyari.com</u>