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a b s t r a c t

Face recognition systems based on Convolutional Neural Networks (CNNs) or convolutional architectures
currently represent the state of the art, achieving an accuracy comparable to that of humans.
Nonetheless, there are two issues that might hinder their adoption on distributed battery-operated
devices (e.g., visual sensor nodes, smartphones, and wearable devices). First, convolutional architectures
are usually computationally demanding, especially when the depth of the network is increased to max-
imize accuracy. Second, transmitting the output features produced by a CNN might require a bitrate
higher than the one needed for coding the input image. Therefore, in this paper we address the problem
of optimizing the energy-rate-accuracy characteristics of a convolutional architecture for face recogni-
tion. We carefully profile a CNN implementation on a Raspberry Pi device and optimize the structure
of the neural network, achieving a 17-fold speedup without significantly affecting recognition accuracy.
Moreover, we propose a coding architecture custom-tailored to features extracted by such model.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Humans are able to identify and recognize a face, automatically
assigning it to a given person, with just a few glances. Our brain
processes visual stimuli and stores a concise representation of a
face in our memory. It is able to correctly distinguish between up
to tens of thousands of different faces, although it might not be
able to recall the name of the person they correspond to [22]. Fur-
thermore, our brain is capable of recognizing instances of the same
face acquired under different conditions (e.g. point of view, illumi-
nation, aging).

The problem of automatically detecting and recognizing faces
has received significant attention in the past fifty years, with the
goal of matching the capabilities of human vision. The first
attempts date back to the end of the 1960s, with the models pro-
posed by Bledsoe [3] and Kanade [13]. Such early efforts strived
for modeling a face in terms of fiducial points and their relation-
ships, and are quite fragile to changes in imaging conditions. More

recently, such approaches have been outperformed by more effec-
tive models that achieve better recognition accuracy while requir-
ing low computational resources. Sirovich and Kirby propose
Eigenfaces [23], a compact yet effective representation of human
faces. Turk and Pentland extended upon such a model to build a
computationally efficient face detection and recognition system
[25]. Face recognition and verification systems based on aligned
images acquired in controlled environments have made great
strides in the last twenty years, being able to reduce the error rate
by three orders of magnitude [18]. Most current approaches
achieve state-of-the-art performance by exploring rich representa-
tions of the underlying visual content that consists of up to tens of
thousands handcrafted features [1,4].

In the last few years, following a trend also present in several
image classification tasks, Convolutional Neural Networks (CNNs)
and Deep Learning techniques have been applied to large-scale
face verification and recognition systems as well [9,19]. Recently,
Taigman et al. proposed DeepFace [24], a deep CNN that has been
proven to perform on a par with humans in terms of face recogni-
tion accuracy. Such a system exploits a large amount of heteroge-
neous training data to learn discriminative low-dimensional
representations of faces. Likewise, Chiachia et al. [5] have used
CNNs to address the problem of familiar face recognition by explic-
itly learning enhanced person-specific face representations from
large amounts of experience with the appearance of individuals.
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CNNs usually require a large amount of training data and
computational resources to be effectively trained. Nonetheless,
convolutional architectures based on random weights have been
shown to provide good results in terms of accuracy for the task
of face recognition and matching.

Effective technologies for automatic face recognition enable a
large number of services, such as automated surveillance systems,
person authentication, image tagging, and advanced human–com-
puter interaction. Such tasks are often performed in a distributed
fashion on battery-operated low-power devices such as mobile
phones, smart cameras or nodes of a Visual Sensor Network
(VSN). The problem of performing distributed visual analysis tasks
on low-power devices has been extensively addressed. The tradi-
tional approach to such kind of tasks, hereinafter denoted as
Compress-Then-Analyze (CTA) [21], consists in the acquisition of
visual content on a low-power node, its compression by means
of image (e.g., JPEG) or video (e.g., H.264/AVC) coding primitives,
and its transmission to a central node, where processing takes
place.

Recently, the novel Analyze-Then-Compress (ATC) paradigm has
been proposed [21,20,2,17]. In this paradigm, low-power nodes
acquire visual content and extract higher-level information from
it by means of efficient feature extraction algorithms. Such content
is then compressed resorting to ad hoc coding primitives and
transmitted to a central node, that performs visual analysis. Such
approach has been proven to achieve good results in terms of
rate-energy-accuracy performance for a number of tasks including
content-based retrieval [21,20], object tracking [2] and mobile aug-
mented reality [17]. Moving part of the computational burden, that
is, detecting faces and computing compact yet representative fea-
tures, from a centralized node to sensing devices produces several
positive effects:

1. it fairly distributes computational complexity over network
nodes, without requiring power-eager central units to serve a
high number of clients;

2. it requires less bandwidth than transmitting images or video
sequences; and

3. it reduces the risk of privacy violations, avoiding the transmis-
sion of the pixel-level visual content.

In this paper, we aim at investigating the adoption of convolu-
tional architectures in distributed battery-operated devices, with
the objective of enabling the Analyze-Then-Compress paradigm for
face identification/recognition.

According to [10–12,16], there are two main problems in bio-
metrics: verification and identification. Depending on the applica-
tion context, a biometric system may operate either in verification
mode or in identification/recognition mode.

In the verification mode, we have a biometric systemwhich val-
idates a person’s identity by comparing the acquired biometric
sample with his own biometric template previously stored in the
system database. In this setup, an individual who wants to be rec-
ognized claims an identity (e.g., ‘‘Bob”), normally using a PIN, a
user name, or even a smart card, and the system retrieves Bob’s
biometric sample from the database and conducts a 1:1 compar-
ison of the retrieved model to the one just acquired from the per-
son claiming to be ‘‘Bob” to determine whether the claim is true or
not (e.g., ‘‘Is this sample really from Bob?”).

In turn, in the identification/recognition mode, we have a sys-
tem which recognizes an individual by searching the templates
of all the users in the database for a match. Therefore, in this setup,
we have a 1:N comparison to establish an individual’s identity (or
fail to do so if the subject is not enrolled in the system database)
without the subject having to claim any identity (e.g., ‘‘Whose
biometric data is this?”).

In this work, therefore, we focus our efforts on the identifica-
tion/recognition mode in which we have a face sample acquired
by a distributed battery-operated device and need to compare it
to several other instances (faces) in a server when trying to recog-
nize a given person. In this operational mode, it is a pre-requisite to
have some individuals enrolled into the system, otherwise it is not
possible to perform any recognition. Posing this problem in the
context of machine learning classification, the database or gallery
of enrolled individuals represents the training data to which we
need to compare an unseen test sample when performing recogni-
tion. Here, if ‘‘Bob” is enrolled in the system, it means that the sys-
tem has been fed with some of his face samples. When he steps in
for recognition, the system collects a new face sample and com-
pares it to all existing user face samples in the system database
when performing recognition.

The adoption of complex convolutional models in the context of
face recognition requires to address two issues, i.e., (i) the high
demand of computational resources; and (ii) the apparent data
expansion introduced by such architectures. In particular, we
empirically evaluate the computational requirements of the
feature extraction process, investigating the impact of all hyperpa-
rameters. We perform the experiments on a low-power ARM-
based Raspberry Pi computer taking the convolutional architecture
proposed by Pinto et al. [19] as a reference. Furthermore, we opti-
mize the CNN considering two main aspects: first, we propose an
energy-efficient yet effective convolutional network, custom-
tailored to the computational resources of the available hardware;
second, we introduce ad hoc feature coding primitives aimed at
significantly reducing the output bitrate of such a model.

We organized the remaining of this paper into four sections.
Section 2 gives an overview of Convolutional Neural Networks.
Section 3 introduces an optimized convolutional architecture that
dramatically speeds up feature extraction. Section 4 describes the
proposed architecture and a rate-accuracy comparison between
ATC vs. CTA. Finally, Section 5 presents the conclusions and future
research directions.

2. Background on Convolutional Neural Networks (CNNs) and
convolutional architectures

With the ‘‘big data” revolution, many applications including
computer vision, speech/audio recognition, social networks,
among others, are dealing with larger and larger amounts of data.
At the same time, the advent of powerful, parallel and scalable
computing architectures is enabling more complex and effective
statistical and computational models. In this context, large neural
networks are getting constantly increasing attention and achieve
outstanding results in terms of task accuracy for a number of
heterogeneous applications [14,24,7].

In particular, in the context of computer vision, Convolutional
Neural Networks (CNNs) have been proposed as effective variants
of MultiLayer Perceptrons, inspired by human visual cortex [15]
with very heterogeneous applications [14,24]. They combine three
main features to achieve invariance with respect to imaging condi-
tions: local receptive fields, shared weights, and spatial pooling.
Fig. 1 depicts a block diagram of the 3-layer architecture proposed
by Pinto et al. [19] as an example. Each layer of such model com-
prises sublayers of neurons that perform filtering, thresholding,
spatial pooling, and normalization. These linear and non-linear
operations generate increasingly more complex feature maps, ulti-
mately outputting a feature-based representation that is fed to a
classifier for prediction. Traditional CNNs require a computation-
ally expensive training stage to be performed on a large amount
of training data in order to learn the filter weights. Instead, the
peculiarity of the convolutional architecture proposed by Pinto
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