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a b s t r a c t

In this paper, a convex variational model for multiplicative noise removal is studied. Accelerating primal–
dual method and proximal linearized alternating direction method are also discussed. An improved pri-
mal–dual method is proposed. Algorithms above produce more desired results than primal–dual algo-
rithm when we solve the convex variational model. Inspired by the statistical property of the Gamma
multiplicative noise and I-divergence, a modified convex variational model is proposed, for which the
uniqueness of solution is also provided. Moreover, the property of the solution is presented. Without
inner iterations, primal–dual method is efficient to the modified model, and running time can be reduced
dramatically also with good restoration. When we set parameter a to 0, the convex variational model we
proposed turns into the model in Steidl and Teuber (2010). By altering a, our model can be used for dif-
ferent noise level.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Image denoising is an important problem in signal and image
processing and has being widely studied in the applied mathemat-
ics community. Most of literatures deal with additive noise model:
an original image u, which is degraded by some additive noise g,
and the corrupted image f. The problem is to recover u from f. A
mathematical description of such degradation process as follows,
assume that f : X ! R, is a real function, where X is a connected
bounded open subsets of R2 with Lipschitz boundary, and f is gen-
erated from a general model f ¼ uþ g. The recovery of u from f is
an ill-posed inverse problem. Many methods and various effective
algorithms have been proposed, and we are interested in the vari-
ational approach here. One of the most successful and popular
techniques for approximating the solution of this problem is pro-
posed by Rudin–Osher–Fatemi (cf. [28]), i.e., ROF model, which is
defind as follows:

u ¼ argmin jujBV þ kku� fk2L2 ;

for k > 0, where BVðXÞ denotes the space of functions with bounded
variation on X, see the following for more details, and j � j denotes
the BV seminorm, formally given by

jujBV ¼
Z

j 5 uj;

which is also marked as total variation (TV) of u. An overview of
image restoration based on variational regularization is presented
in [16]. In this paper, we focus on restoring images which are cor-
rupted by multiplicative noise g, i.e., restoring the original image
u from f ¼ ug, where g is assumed to follow the Gamma distribu-
tion with mean 1. For x P 0

Pgðx; h;KÞ ¼ 1
hKCðKÞ x

K�1e�
x
h:

Usually we assume that f > 0, and unlike additive noise removal
problems, the noisy image is the multiplication of noise and the
original image, so almost all information of the original image
may disappear in the observed image. Hence, multiplicative noise
removal is totally different from additive noise removal, and it com-
monly occurs in active imaging systems, like synthetic aperture
radar (SAR), ultrasound imaging, microscope images, etc.

1.1. Multiplicative noise removal

The multiplicative noise has not yet been researched thor-
oughly, especially with variational method. As far as we know,
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the first variational approach devoted to multiplicative noise is the
one by Rudin et al. [27], a constrained optimization problem which
is referred to as RLO model:

inf
u2SðXÞ

Z
X
jDuj ð1Þ

subject toZ
X

f
u
dx ¼ 1;

Z
X

f
u
� 1

� �2

dx ¼ h2;

where h2 denotes the variance of g; SðXÞ ¼ fv 2 BVðXÞ :
v > 0g;BVðXÞ is the subspace of functions space u 2 L1ðXÞ such that
the following is finite:

JðuÞ ¼ sup
Z
X
uðxÞdivnðxÞdx; n 2 C1

0 ðX;R2Þ; jjnjjL1ðX;R2Þ � 1
� �

; ð2Þ

where C1
0 ðXÞ is the set of smooth functions on X that vanishes on

the boundary @X. BVðXÞ equipped with the norm
jjujjBV ¼ jjujjL1 þ JðuÞ is a Banach space. If u 2 BVðXÞ, the distribu-
tional derivative Du is a bounded Radon measure, and (2) corre-
sponds to the total variation, i.e., JðuÞ ¼ RX Du. For X � R2, if
1 6 p 6 2, then BVðXÞ,!LpðXÞ, further more, for 1 6 p < 2, this
embedding is compact. For further details on BVðXÞ, we refer read-
ers to [2]. Considering that it can smooth the noise in the isotropic
regions of noisy image and can also protect some important details
from over-smoothing, the total variation (TV) of u is selected as the
objective function. With the maximum a posteriori (MAP) estima-
tor, Aubert and Aujol proposed a variational model as follows, and
generally, it is referred to as AA model [3],

inf
u2SðXÞ

Z
X

loguþ f
u

� �
dxþ k

Z
X
jDuj: ð3Þ

The first term is the fidelity term, and the second term is a regular-
ization term. Parameter k is a trade-off between a good fit of f and a
smoothness requirement. In order to restore more texture details of
the denoised image, spatially varying regularization parameter is
employed in AA model [24]. With a nonconvex fidelity, the com-
puted solutions by some optimization methods are not necessary
to a global optimal solution, and also rely on the initial estimation,
and thus, the restored quality is affected. In order to obtain a convex
model, a logarithm transform on both sides of equation f ¼ ug is
taken in [29], and the multiplicative problem is converted into an
additive one which we denote it as log-model. A rather general for-
mulation for the multiplicative noise is also presented in [29],
including [2,11,27]. Then log-model is modified in [21] by introduc-
ing an auxiliary variable w ¼ logu and a quadratic term, and a sim-
pler alternating minimization algorithm is performed. Also, the
convergence of this algorithm is described. It is remarkable that
the model in [5,21,29] are convex in the logarithm domain, but
are not convex in the original image domain. In [30], the I-
divergence as the data fidelity term with TV regularization or the
nonlocal means to remove the multiplicative Gamma noise is con-
sidered, and in the continuous setting, the relationship between
the log-model and the I-divergence-TV multiplicative noise model
is built. With rewriting the blur and multiplicative noise equation
such that both the image variable and the noise variable are decou-
pled, a new convex optimization model is proposed in [36]. In [13],
the unconvexity of AA model is improved by a quadratic term
which is based on statistic properties of the gamma noise, and the
uniqueness of the solution is demonstrated under a mild condition.
Since the model is improved to convex, algorithms for solving con-

vex optimization problems can be used. For instance, the alternat-
ing direction method of multipliers (ADMM) in [18], its variant,
the split-Bregman algorithm in [19], proximal linearized alternating
direction (PLAD) method in [31], Chambolle’s semi-implicit gradi-
ent decent method [7], and the primal–dual hybrid gradient algo-
rithm [35,37], etc. Primal–dual method which is proposed in
[8,15,26] is applied in [13]. For multiplicative noise, the filter-
based methods are also very popular. The median filter has also
been examined for multiplicative noise reduction in [10,25]. Nonlo-
cal means method has been studied in [6], and nonlocal operators is
describes in [22]. Owing to the similarity of image patches, the non-
local regularization can preserve image edges and textures better
than the classical regularization. Some convex model with the non-
local total variation for multiplicative noise removal has been dis-
cussed. In [12], the log-model with the nonlocal regularization
term has been demonstrated. Also in [30], nonlocal means as regu-
larizer is described.

1.2. Some properties of multiplicative noise

Considering a random variable Y ¼ 1ffiffi
g

p , where g follows Gamma

distribution. Some statistic properties has been discussed in previ-
ous articles, we make a simple depiction here.

Proposition 1.1. Suppose that the random variable g follows a
Gamma distribution with mean 1. Set Y ¼ 1ffiffiffigp then

lim
K!1

EððY � 1Þ2Þ ¼ 0:

Proposition 1.2. Suppose that the random variable g follows a
Gamma distribution with mean 1. Set Y ¼ 1ffiffi

g
p . Then we have the

following:

(1)
Rþ1
0 pYðyÞ log pYðyÞdy ¼ log2� logð ffiffiffiffi

K
p

CðKÞÞ þ 2Kþ1
2 WðKÞ � K ,

where WðKÞ :¼ d logCðKÞ
dK is the digamma function (see [1]);

(2)
Rþ1
0 pY ðyÞ logpNðlK ;r2

K ÞðyÞdy¼�1
2 logð2per2

KÞ, where pNðlK ;r2
K ÞðyÞ

denotes the probability density function(PDF) of the
Gaussian distribution NðlK ;r2

KÞ;
(3) limK!þ1DKLðYkNðlK ;r2

KÞÞ ¼ 0.

The proof were discussed in [13]. But as we can see there, the

value of EððY � 1Þ2Þ is small only when K is relatively large, and
the Fig. 1 in [13] also demonstrates that when K is sufficient large,
the KL divergence of Y with the Gaussian distribution NðlK ;r2

KÞ
tends to 0, where lK and r2

K are the mean and variance of Y ,
respectively. When K ¼ 6, see Fig. 1 of [13], it does not fit very well.

By introducing a quadratic penalty term and a parameter a into
the AA model (3), it leads to a convex variatioal model discussed by
Dong and Zeng [13]:

inf
u2SðXÞ

Z
X

loguþ f
u

� �
dxþ a

Z
X

ffiffiffi
u
f

r
� 1

� �2

dxþ k
Z
X
jDuj: ð4Þ

The penalty parameter a > 0, besides, SðXÞ :¼ fv 2 BVðXÞ : v P 0g,
which is closed and convex, and log 0 ¼ �1; 10 ¼ þ1 is defined.
The existence and uniqueness of solution is presented with a proper
selection of a.

1.3. The contribution

Although model (4) is convex with a proper a, and many
algorithms for convex optimization can be used, but the fidelity
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