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a b s t r a c t

Sparsity-based models have proven to be very effective in most image processing applications. The notion
of sparsity has recently been extended to structured sparsity models where not only the number of com-
ponents but also their support is important. This paper goes one step further and proposes a new model
where signals are composed of a small number of molecules, which are each linear combinations of a few
elementary functions in a dictionary. Our model takes into account the energy on the signal components
in addition to their support. We study our prior in detail and propose a novel algorithm for sparse coding
that permits the appearance of signal dependent versions of the molecules. Our experiments prove the
benefits of the new image model in various restoration tasks and confirm the effectiveness of priors that
extend sparsity in flexible ways especially in case of inverse problems with low quality data.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Most tasks in signal processing and analysis are significantly
simplified when the data is represented into its right form, espe-
cially for high-dimensional signals like images. The quest for the
right signal representation has fostered the use of overcomplete
dictionaries as tools for signal compression, denoising, enhance-
ment and various other applications. Dictionaries have the advan-
tage to have very few constraints in their construction, so that they
can be finally adapted to the data processing task at hand. How-
ever, this flexibility has a price: the representation of a signal is
unfortunately not unique in overcomplete dictionaries, and finding
the best such representation is generally an ill-posed problem. As a
result, well-chosen priors or models about the signal representa-
tion become necessary in order to develop effective signal process-
ing algorithms with overcomplete representations.

The most common models in overcomplete signal representa-
tions are based on sparsity priors. This means that the signal is well
represented by only a few components or atoms of the overcom-
plete dictionary. Sparsity is a pretty intuitive prior that is also bio-
logically plausible, as shown in the pioneer work of Olshausen and
Field [1] where it is suggested that sparsity could be a property
employed by the mammalian visual system for achieving efficient
representations of natural images. Vast research efforts have been

deployed in the last decades in order to design algorithms that
solve the hard problem of sparse decomposition of signals by effec-
tive approximation [2,3] or convex relaxation [4,5].

While sparsity is a simple and generic model, it is not always a
sufficient prior to obtain good signal reconstruction, especially if
the original data measurements are compressed or inaccurate.
More effective signal models can therefore be built by considering
the dependencies between the dictionary elements that appear in
the signal representation instead of their number only. In that
spirit, group sparsity has been introduced as a way to enforce a
pre-specified structure in the decomposition. Specifically, the com-
ponents of the dictionary are partitioned into groups and the ele-
ments of each group are encouraged to appear simultaneously in
the signal decomposition [6]. Alternatively, the atoms can also
obey a predefined hierarchical structure [7]. Other approaches
have considered additional flexibility by constraining the signal
decomposition to include elements from overlapping groups of
atoms [8–10]. The group sparsity structure is however not always
appropriate for modeling signal patterns as the groups are merely
identified in terms of their support. It is however not suitable for
differentiating patterns with the same support but different distri-
butions, which could actually be very different signal patterns.
Such a case is presented in Fig. 1 where we show how much the
image of a face can change when varying the coefficients of its
sparse code while keeping the same support. This ambiguity is
unfortunately a serious drawback in various applications such as
signal recovery and recognition, for example.

We propose here a new signal model to represent signal pat-
terns and higher level structures. Our goal is to build richer priors
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than classical structured sparsity models that merely focus on the
support of the signal representation and not on the actual energy
distribution. Our model builds on our previous work on structured
sparsity [11] and represents signals as sparse sets of molecules,
which are linear combinations of atoms from a redundant dic-
tionary of elementary functions. To enhance the flexibility of our
model, in this work we go one step further and instead of allowing
only small variations in the coefficients of the molecules, we allow
molecule realizations to appear in various forms that can have
small deviations on both their coefficients and their support. To
this end, we form pools of similar atoms in the dictionary, and
assume that all atoms in a pool carry similar information. The
molecule realizations are then defined as slightly deformed ver-
sions of the molecule prototypes, where atoms could be replaced
by similar atoms from their respective pools. As a result, a given
molecule prototype represents a group of structurally similar pat-
terns whose exact form in signals is controlled by the construction
of the atom pools. This provides flexibility in the representation of
signals with molecules, while preserving the main structural infor-
mation in the sparse signal approximation.

We study in details our new structured sparsity model and ana-
lyze the recovery performance of molecule representations. We
formally show that our choice of the synthesis dictionary based
on molecules realizations provides a good compromise between
structure and flexibility. Then we propose a novel constructive
sparse coding algorithm of signals with our new structured spar-
sity model. We exploit the characteristics of atoms pools to design
effective similarity measures for detecting molecule realizations in
signals. Finally, we show the use of our new framework with illus-
trative experiments in various applications such as compressed
sensing, inpainting and denoising. Our results show that the new
structured sparsity prior leads to better reconstruction perfor-
mance than classical sparsity priors due to its flexible molecule-
based representation.

Our efficient structured sparsity model represents a quite
unique framework in the literature. In particular, the consideration
of the coefficient distribution and the atom pools, as well as the
definition of both molecule prototypes and realizations, are impor-
tant characteristics of our new signal representation model. The
coefficients permit to differentiate structures with distinct energy
distributions on the same support and thus to facilitate the proper

recovery of image information in case of incomplete or inaccurate
observations. Another definition of molecule has been previously
proposed in [12] to describe a set of coherent atoms in a dictionary,
but it is more related to the notion of a group or a pool of atoms
than to our original definition of a molecule. Multi-level structures
are also related to the concept of double sparsity introduced in [13]
where the authors learn structures on top of a set of predefined set
of atoms. It is however less flexible than our model, where we
include the notion of pools and molecules realizations that enable
the proper handling of minor structure deformation in the signals.
Less close to our model, some recent works describe the statistical
dependencies between the atoms in a dictionary with graphical
models. For example, Markov Random Fields (MRFs) are employed
for modeling these dependencies in [14–16]. The resulting struc-
ture model is a probability distribution function that compares
the different possible supports of atoms in the signal representa-
tion. These models are quite powerful but unfortunately quite
complicated and highly parametric, such that they are difficult to
deploy and adapt to various applications. Next, the idea of pooling
that is used for defining molecules realizations is quite often used
under different forms to provide local invariance [17,18] in the sig-
nal representation. In our case however, it provides local invari-
ance to small deformations of a set of atoms with higher
resilience to sparse code variability in the identification of typical
patterns in images. Finally, the differentiation between the mole-
cule prototypes and molecule realizations in our new model leads
to realizations of structures that are signal dependent, like in
[19,20]. Hence, the signal representation is flexible but neverthe-
less follows a pre-defined structure. The specific characteristics
of our scheme make it very suitable for various signal processing
tasks and especially signal denoising and inpainting.

The structured sparsity model proposed in this paper is essen-
tially a two-layer architecture with the first layer consisting of
the dictionary atoms and the second of the molecules. The benefits
of such architectures over the flat ones has been a subject of
research for a long time in the feature extraction and machine
learning community. It has been validated experimentally in the
case of signal recognition in [21] while the mere existence of the
field of deep learning can argue in benefit of multistage architec-
tures. The deep learning systems consist of a hierarchy of features
along with some pooling and contrast normalization operators that
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Fig. 1. An example of the ambiguity related to the support of the sparse codes. In (a) we show the image of a face and in (b) its sparse approximation with 60 atoms on a
dictionary of Gaussian atoms. The next two columns are produced by randomly choosing the values of the coefficients on the same support. The final signal is then
normalized. The resulting images are quite different than the original face proving the importance of the coefficients along with the support of the sparse code.
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