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a b s t r a c t

In this paper, the application of non-local means (NLM) filtering on MRI images is investigated. An essen-
tial component of any NLM-based algorithm is its similarity measure used to compare pixel intensities.
Unfortunately, virtually all existing similarity measures used to denoise MRI images have been derived
under the assumption of additive white Gaussian noise contamination. Since this assumption is known
to fail at low values of signal-to-noise ratio (SNR), alternative formulations of these measures which take
into account the correct (Rician) statistics of the noise are required. Accordingly, the main contribution of
the present work is to introduce a new similarity measure for NLM filtering of MRI images, which is
derived under bona fide statistical assumptions and proves to posses important theoretical advantages
over alternative formulations. The utility and viability of the proposed method is demonstrated through
a series of numerical experiments using both in silico and in vivo MRI data.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Magnetic resonance imaging (MRI) is considered to be one of
the most advanced modalities of modern medical imaging, which
excels in providing a spectrum of useful diagnostic contrasts [1].
The latter constitute an intensity-coded representation of the
physical and physiological properties of biological tissues. Conse-
quently, the precision with which a contrast is represented is of
pivotal importance for the processes of tissue characterization.
This fact establishes the principal value of post-processing tech-
niques which aim at improving the signal-to-noise ratio (SNR) of
diagnostic MR images, while preserving the integrity and consis-
tency of their anatomical content.

Unfortunately, in virtually all realizations of MRI, attaining
higher spatial resolution entails using longer acquisition times.
Apart from being highly undesirable from the perspective of pa-
tients’ comfort and compliance, longer acquisition times lead to
motion-related artifacts, which are the main foe of cardiac and dif-
fusion MRI [2–5]. On the other hand, decreasing the acquisition
times is likely to result in a loss of spatial resolution as well as in
an amplification of measurement noises. In addition to obscuring
and masking diagnostically important details within MR scans,
such noises also degrade the performance of computer-aided diag-
nosis, which necessitates the development and application of effi-
cient and reliable tools of image denoising [6].

The current arsenal of image denoising methods used in MRI is
immense, which makes their fair classification a difficult task. For
this reason, we are going to limit our discussion to the following
three groups of denoising techniques, which encapsulate a number
of important approaches. Specifically, the first group encompasses
variational methods, which are typically implemented through the
numerical solution of certain partial differential equations (PDE)
[7–11]. Thus, for example, [7] suggests an adaptation of the classi-
cal anisotropic diffusion filter of [12] for simultaneous noise reduc-
tion and enhancement of object boundaries in MRI. On the other
hand, the denoising method of [8] is based on minimization of a
different cost functional, whose associated gradient flow has the
form of a fourth-order PDE. In [9], the information from body-coil
and surface-coil images is incorporated into the reconstruction
process in the form of data fidelity constraints. The work in [10]
introduces a maximum a posteriori (MAP) technique using a Rician
noise model in combination with spatial regularization. Finally, the
work in [11] performs the denoising by combining the linear min-
imum mean square error (LMMSE) filtering [13] with anisotropic
diffusion filtering.

A different group of denoising methods takes advantage of the
sparsifying properties of certain linear transforms [14–23] (for a
comprehensive review of such methods, the reader is also referred
to [24]). Thus, for instance, the method of [18] is based on wavelet
thresholding applied to squared-amplitude MR images, followed
by ‘‘debiasing’’ of the approximation coefficients of the wavelet
decomposition to account for their non-central chi-square distri-
bution statistics. A different (robust) shrinkage scheme in the do-
main of a wavelet transform is also proposed in [21]. Using a
different line of arguments, the wavelet denoising method of [20]
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is applied to complex-valued MR images. Finally, in [23], the MR
images are enhanced by means of a wavelet-domain bilateral filter.

The third group of image denoising algorithms employs the
concept of non-local means (NLM) filtering, which was originally
proposed in [25–27], with its later improvements reported in
[28,29]. As a general rule, NLM filters estimate the noise-free inten-
sity of a given pixel as a weighted linear combination of the other
(noisy) image intensities. In this case, the weights of the linear
combination are determined based on a similarity measure (SM) be-
tween the neighbourhoods of the target and source pixels. As a re-
sult, the performance of an NLM filter is largely determined by the
optimality of a chosen SM with respect to the properties of the ori-
ginal image as well as those of measurement noise. Thus, for exam-
ple, under the conditions of additive white Gaussian (AWG) noise
contamination, the NLM filters in [25,28] have been shown to out-
perform many variational and wavelet-based filters in terms of
noise suppression and the quality of edge preservation.

Motivated by the success of NLM filtering in general imaging,
the works in [30,31] have extended the Gaussian-mode NLM filters
to MR imagery. A different approach is introduced in [32] which
considers that the magnitude of MR images obey a Rician distribu-
tion [3]. This approach produces an unbiased estimate of the origi-
nal image through combining a Gaussian-mode NLM filter with the
operation of bias estimation and removal. A similar method has
been reported in [33], where a Gaussian-mode NLM filter is applied
to the squared magnitude of MR images. The same line of ideas
have been further investigated and exploited in [34–36]. In the
method reported in [37], the measured image intensities are first
classified based on the similarity of their respective neighbour-
hoods, followed by estimating the image intensities by means of
a maximum likelihood (ML) approach. A similar approach is de-
rived in [38], where the similarity of image pixels is established
based on a reference image, precomputed using the original NLM
algorithm of [25–27]. Additionally, a variance stabilization ap-
proach for the Rice distribution has been proposed in the work of
[39]. Subsequently, it has been demonstrated that the application
of the variance stabilization transformation enables Gaussian-
mode filters to achieve comparable denoising performance to fil-
ters specifically designed to account for the Rician statistics of
the MRI noise. Finally, the approach in [40] applies the sparse 3D
transform domain collaborative filtering approach of [28] to the
case of MRI images.

In the majority of earlier methods for NLM-based denoising of
MR images, the Rician nature of measurement noises is taken into
account through either a rigorous ML analysis [37,38] or a properly
designed ‘‘debiasing’’ procedure [32,33]. Common to these meth-
ods, however, is to compare pixel neighbourhoods using a similar-
ity measure which is optimal for Gaussian noise contamination
[41,42]. This fact suggests that a further improvement in the per-
formance of NLM filtering could be obtained via adapting the sim-
ilarity measure to the properties of Rician noise, which is inherent
in MRI. Such an adaptation should be particularly useful in the case
of relatively low values of SNR, whence the Gaussian (noise) model
ceases to be an adequate approximation of the Rician one [3].
Accordingly, deriving such an SM constitutes the main objective
of the present paper. The present work has been motivated by
the results of [42,43], as well as by the more recent developments
reported in [44,45]. Specifically, it has been pointed out that the
approach for finding the similarity measure as presented in
[42,43] should be avoided in the case of MR image denoising.
Accordingly, we propose a new formulation of a similarity measure
specifically designed for MRI noise, and demonstrate its usefulness
and viability through a series of experiments using both in silico
and in vivo MRI data.

Table 1 summarizes the main abbreviations used in the paper,
whose remainder is organized as follows. Section 2 provides some

necessary details on the image formation model of MR images and
their noise statistics. Sections 3 and 4 describe some principal ap-
proaches to NLM filtering and point out their undesirable charac-
teristics when applied to the MRI setting. A new SM and the
closed-form expressions for its associated weights are derived in
Section 5, while Section 6 details a method for applying the pro-
posed weights to MR scans. Finally, Section 7 compares the perfor-
mance of the proposed algorithm with that of some alternative
methods using both in silico and in vivo MRI data, while the main
results and conclusions of the paper are recapitulated in Section 8.

2. Image formation model and noise statistics

MR images are acquired in the Fourier domain, followed by the
processes of frequency demodulation and inverse transformation
which result in complex-valued images, whose magnitude is sub-
sequently displayed [4]. In this case, if the frequency-domain data
is contaminated by zero-mean AWG noise, the complex amplitude
M of the noisy observation A expfıag þ N, with N ¼ Nr þ ıNi , is gi-
ven by

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA cos aþ NrÞ2 þ ðA sin aþ NiÞ2

q
; ð1Þ

where A stands for the true image amplitude, while Nr and Ni are
mutually independent AWG noises of standard deviation r, and
a 2 ½0;2pÞ is an arbitrary phase shift. In this case, M can be shown
to follow the Rician distribution model that is given by1 [3,4]

pMjAðmjaÞ ¼
m
r2 exp � a2þm2

2r2

n o
I0

am
r2

� �
; m P 0;

0; otherwise:

(
ð2Þ

where I0 denotes the zero-order modified Bessel function of the first
kind. Fig. 1(a) depicts several typical shapes of pMjAðmjaÞ corre-
sponding to a range of the values of A and r ¼ 1. As can be seen
from the figure, for A > 3r, the Rician probability density function
closely resembles that of a Gaussian random variable [3]. However,
for lower values of A, the density pMjAðmjaÞ becomes more asym-
metric and protrudently heavy-tailed. Specifically, for A ¼ 0; M fol-
lows a Rayleigh distribution model.

The Rician nature of M in (1) renders impractical a straightfor-
ward application of many filtering strategies. This is because of the
highly-nonlinear relation between the expectation EfMg of M and
A. Specifically, in the case of (2) one has

EfMg ¼ r
ffiffiffiffiffiffiffiffiffi
p=2

p
L1=2ð�A2=2r2Þ; ð3Þ

Table 1
List of Notations and Abbreviations.

Notations and
Abbreviations

Meaning Formula (if
applicable)

NLM Non-local means -
NCCS Non-central chi square -
SM Similarity measure -
SNL Similarity measure for NLM -
SSM Subtractive similarity measure (14)
RSM Rational similarity measure (17)
SSMs;t;k SSM for G-images (NCCS statistic) (16)
RSMs;t;k RSM for M-images (Rician

statistic)
(19)

CG
s;t;k

Correlative SSM for G-images
(NCCS statistic)

(22)

CM
s;t;k

Correlative RSM for M-images
(Rician statistic)

(24)

1 Here and hereafter, we use the standard statistical formalism for denoting
random variables and their associated realizations by capital letters and their lower-
case counterparts, respectively.
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