
Double Gaussian mixture model for image segmentation with spatial
relationshipsq

Taisong Xiong a, Lei Zhang b,⇑, Zhang Yi b

aCollege of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, Sichuan, PR China
bMachine Intelligence Laboratory, College of Computer Science, Sichuan University, Chengdu 610065, PR China

a r t i c l e i n f o

Article history:
Received 26 June 2015
Accepted 23 October 2015
Available online 10 November 2015

Keywords:
Markov random model
Gaussian mixture model
Image segmentation
Expectation maximization (EM) algorithm
Gradient descent
Spatial relationships
Synthetic noisy grayscale images
Real-world color images

a b s t r a c t

In this paper, we present a finite mixture model based on a Gaussian distribution for image segmentation.
There are four advantages to the proposed model. First, compared with the standard Gaussian mixture
model (GMM), the proposed model effectively incorporates spatially relationships between the pixels
using a Markov random field (MRF). Second, the proposed model is similar to GMM, but has a simple rep-
resentation and is easier to implement than some existing models based on MRF. Third, the contextual
mixing proportion of the proposed model is explicitly modelled as a probabilistic vector and can be
obtained directly during the inference process. Finally, the expectation maximization algorithm and
gradient descent approach are used to maximize the log-likelihood function and infer the unknown
parameters of the proposed model. The performance of the proposed model at image segmentation is
compared with some state-of-the-art models on various synthetic noisy grayscale images and real-
world color images.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The goal of image segmentation [1] is to label image pixels and
divide them into clusters according to similarity of attributes.
Image segmentation has been widely applied to image processing,
video surveillance systems and medical image analysis. Because of
its widespread applications, image segmentation is receiving
greater attention. In recent years, many different algorithms for
image segmentation have been developed. Among these algo-
rithms, representative techniques include region splitting and
merging [2,3], normalized cut [4,5], mean shift [6,7], and level sets
[8–10]. Statistical algorithms based on clustering have also been
successfully applied to image segmentation.

Among the statistical models, the finite mixture model (FMM)
[11] is receiving increasing attention because of its simple form
and ease of implementation. The FMM comes in several different
forms. Two representative FMMs are the Gaussian mixture model
(GMM) [12,13] and Student’s-t mixture model (SMM) [14,15].
The component functions for these models are the Gaussian distri-
bution and Student’s t-distribution, respectively. The expectation
maximization (EM) [16,17] algorithm is generally used to infer

the parameters of these models. The GMM and SMM obtain good
segmentation results when applied to image segmentation [13,15].

However, experiments show that FMM is not robust against
noise, with unsatisfactory segmentation results obtained when
images are degraded by noise. The experiments show that FMM
is not robust against noise. The main cause of this is that FMM
supposes that the pixels are statistically independent and so the
spatial information of pixels is not taken into account.

To overcome the aforementioned drawback and improve the
quality of image segmentation for FMM, the Markov random field
(MRF) [18,19] model which incorporates the spatial relationships
between image pixels has been proposed. MRF models have been
widely applied in image processing [20,21] and image segmenta-
tion [22]. The MRF models are divided into two types according
to the methods used to incorporate spatial information. One
approach imposes spatial information on pixel labels [22,23].
These MRF models obtain better segmentation results than FMM
because of the spatial information, but this also increases the
burden of computation cost for the MRF model. To improve the
computational efficiency of MRF model, a Bethe approximation
[24] is used to approximate the Gibbs free energy function. How-
ever, the computational cost in [24] still remains very high because
of the complex object function.

Another type of MRF, the spatially variant FMM (SVFMM) was
proposed in [25]. In this model, the contextual mixing proportion
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pnk is assumed to be a random variable upon which a spatial
smoothness prior is imposed. The EM algorithm is used to infer
the parameters of the model. The model obtains better segmenta-
tion results than FMM. However, the contextual mixing proportion
pnk cannot be obtained in closed form in the M-step of the EM algo-
rithm. In other words, the contextual mixing proportion pnk is a
probabilistic vector and must be nonnegative and satisfy the con-
straints

PK
k¼1pnk ¼ 1. To obtain a closed form solution for pnk, the

gradient projection algorithm is added in the M-step [25]. Blekas
et al. [26] improved the SVFMM proposed in [25] using convex
quadratic programming instead of gradient projection. The primary
drawback of the model in [25,26] is that the contextual mixing pro-
portion pnk cannot be obtained directly from the given data. To
resolve this problem, a prior distribution based on the Gauss–
Markov random field is imposed on the contextual mixing propor-
tion [27]. The advantage of this model is that a closed form equation
can be obtained by the EM algorithm. To preserve the region bound-
aries of the image segmentation results, two models were proposed
in [28]. The first of these integrates a binary-Bernoulli-distributed
line process (BLP) with MRF, and the other incorporates a
continuous-Gamma-distributed line process (CLP). However, one
drawback of the models in [27,28] is that the contextual mixing pro-
portion pnk still cannot be obtained directly as a probabilistic vector.

To improve the computational efficiency of the model, a new
representation of the contextual mixing proportion was given in
[29]. In this model, the contextual mixing proportion is explicitly
modelled as a probabilistic vector. Therefore, a closed form for
the contextual mixing proportion can be obtained directly. How-
ever, this model can only be applied to grayscale image segmenta-
tion. A detail-preserving mixture model for image segmentation
was proposed in [30]. Different weight values are assigned to dif-
ferent pixels in each pixel’s neighborhood. However, the computa-
tional complexity of the model in [30] is still very high because of
the complex representation of the log-likelihood function.

To simplify the representation of the model and improve the
computational efficiency, we propose a mixture model for image
segmentation in this paper. The proposed model is very different
from most of the aforementioned models. First, the proposed
model is based on GMM. Therefore, it has a simple form and is easy
to implement. Second, the proposed model incorporates spatial
relationships between the pixels. Therefore, it is more robust
against noise than FMM. Third, fewer parameters need to be esti-
mated in the proposed model than in other models based on
MRF, which improves the computational efficiency of the proposed
model. Finally, the EM algorithm and gradient descent method are
used to estimate the parameters of the proposed model directly.
Therefore, the inference process is much simpler than in some
other models based on MRF.

The remainder of this paper is organized as follows. In Section 2,
the theoretical background related to our proposed model is intro-
duced briefly. In Section 3, a detailed description of the proposed
model is presented. Experimental results obtained by our model
for various synthetic noisy grayscale images and natural color
images and some discussions are presented in Section 4. Our
conclusions are given in Section 5.

2. Theoretical background

In this section, the GMM and the mixture model based on MRF,
both of which are closely related to our proposed model, are
described briefly.

2.1. Gaussian mixture model

A GMM is a linear combination of more than one Gaussian dis-
tribution [11]. Its definition is given in the following equation:

f ðxnÞ ¼
XK
k¼1

pkNðxnjHkÞ; ð1Þ

where each component function NðxnjHkÞ is a Gaussian distribution.
The multivariate Gaussian distribution of a D-dimensional vector x
has the following form [12]:

NðxjHÞ ¼ 1

ð2pÞD=2
1

jRj1=2
exp �1

2
ðx� lÞTR�1ðx� lÞ

� �
; ð2Þ

where l represents a D-dimensional mean vector, R denotes a
D� D covariance matrix, and jRj is the determinant of the matrix
R. The prior distribution pk denotes the probability that observation
xn belongs to the kth class Xk. It can be seen that pk is independent
of observation xn. Furthermore, pk should satisfy the following
constraints:

0 6 pk 6 1;
XK
k¼1

pk ¼ 1; k ¼ 1; . . . ;K: ð3Þ

When the density function for an observation has been deter-
mined, the log-likelihood function of N observations is given by
[12]

LðHÞ ¼
XN
n¼1

log
XK
k¼1

pkNðxnjHkÞ
 !

: ð4Þ

According to (1) and (4), the main advantage of the GMM is that its
form is very simple and it requires a small number of parameters.
However, when GMM is applied to image segmentation, these
observations are considered to be independent of each other. To
determine the parameters ðpk;lk;RkÞ, the EM algorithm [16,17] is
usually applied to maximize the log-likelihood function in (4). In
the E-Step of EM, the posterior probability can be obtained by [12]

pðtÞðHkjxnÞ ¼ pkNðxnjHkÞPK
j¼1pjNðxnjHjÞ

: ð5Þ

In the M-Step of EM, the parameters ðpk;lk;RkÞ are updated itera-
tively according to the following formulas [12]:

lðtþ1Þ
k ¼

PN
n¼1 p

ðtÞðHkjxnÞxnPN
n¼1 pðtÞðHkjxnÞ

; ð6Þ

Rðtþ1Þ
k ¼

PN
n¼1 p

ðtÞðHkjxnÞðxn � lkÞðxn � lkÞTPN
n¼1 pðtÞðHkjxnÞ

; ð7Þ

pðtþ1Þ
k ¼

PN
n¼1 p

ðtÞðHkjxnÞ
N

; ð8Þ

where t denotes the iteration number. The loop is terminated when
the convergence condition is satisfied. Using the maximum poste-
rior criterion and the value from (5), we can obtain the class label
for each one pixel.

2.2. Mixture model based on MRFs

To improve the accuracy and robustness of GMM for image seg-
mentation, MRF models [18,19] that consider spatial dependent
relationships between pixels have been introduced. These MRF
models [20] have been applied successfully to image segmentation,
restoration and other processing tasks. In MRF models, the param-
eter pnk represents the probability that pixel xn belongs to the kth
class Xk. It is quite obvious that the prior distribution pnk of the nth
pixel is closely related to itself. The parameter pnk is referred to as
the contextual mixing proportion. The density function of the nth
pixel xn is defined as follows:
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