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a b s t r a c t

The traditional orthogonal moments (e.g., Zernike moments) are formulated with polynomials as their
basis that often face the problem of computation difficulty especially with the high-order moments. In
this paper, we present a novel set of transforms namely the Polar V Transforms (PVTs). We can use the
PVTs not only to generate the rotation-invariant features but also to capture global and local information
of images. Since the PVTs basis functions can keep a low order of polynomials, we can significantly speed-
up the runtime for computing the kernels. The experimental results have demonstrated that our pro-
posed method outperforms the previous methods in runtimes and achieves very good results in shape
retrieval compared to the previous methods especially when the images with high degree of perspective
distortions.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The features of image shapes play an important role in human
recognition and perception. The image shape descriptors can be
categorized into two groups: contour and region-based descriptors.
The contour-based shape descriptors exploit only the features of
the shape boundaries but ignore the potentially important features
of shape interior. Early work includes Fourier descriptors [17],
Wavelet descriptors [1,5], and the Curvature scale space method
[15]. On the other hand, the region-based shape descriptors con-
sider both of the boundaries and interior regions of the object
shape. As the most commonly used approaches for region-based
shape descriptors, moments have been utilized as pattern features
in many applications, including image analysis [22,18,23], pattern
recognition [9,8], texture classification [24], object indexing
[16,25,11] and image matching [2].

The moments theory provides useful series expansions to repre-
sent an object shape. The general image moment can be defined by
a kernel (also as known as a basis function) wnmðx; yÞ, and an image
intensity function f ðx; yÞ, which is shown below:

Mnm ¼
ZZ

X
wnmðx; yÞf ðx; yÞdxdy: ð1Þ

From the mathematical point of view, moments are projections
of the function f ðx; yÞ onto a basis set of wnmðx; yÞ. For a geometric

moment, the basis set is a monomial set of fxnymg. Since a mono-
mial set is not orthogonal, it will be very sensitive to noise, wide
dynamic range, and a large amount of redundant information.

The orthogonal basis functions based moments, e.g., the Legen-
dre and Zernike polynomials, were first introduced by Teague [22]
to represent an image by a set of mutually independent descriptors
with a minimal amount of information redundancy. One of the
main advantages of using the moments is easy to construct the
rotation invariants. An efficient way is to transform a rotation into
a shift in the polar coordinates. In the case of complex moments,
this shift may cause a phase change that can be eliminated by
the multiplication of proper moments, such as the Zernike
moments (ZMs) [22], the pseudo-Zernike moments (PZMs) [23],
and the Orthogonal Fourier–Mellin moments (OFMMs) [19].

One major disadvantage of using these moments is the high
computational complexity due to the nature of monomials/polyno-
mials formulation especially the high-order moments. Several
approaches [12,3] have been proposed to reduce the computa-
tional complexity. They observed that in some cases moments
can be evaluated by utilizing the recurrent relations of the kernel
polynomials and thus speed-up the computation process. How-
ever, there are two main issues: (1) even with this speed-up it still
cannot achieve the real-time computation, and (2) the numerical
errors will be increased due to the use of recursive formulas.

In this paper, we present a novel set of transforms namely Polar
V Transforms (PVTs). We can use the PVTs not only to generate the
rotation-invariant features but also to capture global and local
information of images. Differ from the polynomial radial basis
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functions in the traditional orthogonal rotation-invariant moments
(ORIMs), the PVTs are based on a class of orthogonal piecewise lin-
ear polynomials which is named as the weighted V-system. The
basis functions of PVTs can keep the order of polynomials on a very
low constant (degree one in PVTs). Thus, the computation of the
PVTs is much simpler without performing the computations of
high order polynomials that can drastically speed-up the computa-
tion time. In addition, the weighted V-system is a class of wavelet
function set in which the PVTs can also maintain the multi-scale
features of images. This unique feature is very useful for the pat-
tern analysis of images.

The rest of the paper is organized as below. Section 2 reviews
the construction of ORIMs. Section 3 introduces the weighted
V-system. In Section 4, we describe the orthogonal Polar V
Transforms. Section 5 presents the experimental results. Finally,
in the Section 6 we give concluding remarks.

2. Review of the orthogonal rotation-invariant moments
(ORIMs)

The orthogonal rotation-invariant moments (ORIMs) are con-
structed in the form of

Mnm ¼ cnm

ZZ
X
f ðr; hÞz�nmðr; hÞrdrdh; ð2Þ

where f ðr; hÞ is an image defined on a continuous unit disk
X ¼ fðr; hÞj0 6 r 6 1;0 6 h 6 2pg; cnm is a normalizing factor,
znmðr; hÞ is the ORIMs basis functions of order n and repetition m,
which is constructed as product of a certain radial polynomial part
and an angular phase component, i.e.,

znmðr; hÞ ¼ RnmðrÞejmh: ð3Þ
Because rotating an image would not change the ORIMs magni-

tude, the magnitudes of ORIMs kMnmk have been used as a pattern
feature in many applications [9,8,25,19,10,6].

Furthermore, the ORIMs basis functions are orthogonal to each
other on the unit disk, i.e.,ZZ

X
z�nmðr; hÞzpqðr; hÞrdrdh ¼

1
cnm

dnpdmq; ð4Þ

where dnp ¼ 1 if n ¼ p, and 0 otherwise.
The ORIMs basis functions differ in the radial polynomial. There

are a few sets of ORIMs with their kernels complying with the form
of (2), namely, Zernike moments (ZMs), with their radial kernels
defined as [22]:

RnmðrÞ ¼
Xn�jmj2

i¼0

ð�1Þiðn� iÞ!
i! nþjmj

2 � i
� �

! n�jmj
2 � i

� �
!
rn�2i: ð5Þ

pseudo-Zernike moments (PZMs) [23], a variation of ZMs, with their
radial kernels defined as:

RnmðrÞ ¼
Xn�jmj
i¼0

ð�1Þið2nþ 1� iÞ!
i!ðnþ jmj � iÞ!ðn� jmj þ 1� iÞ! r

n�i; ð6Þ

and orthogonal Fourier–Mellin moments (OFMMs) [19]:

RnðrÞ ¼
Xn

i¼0

ðnþ iþ 1Þ!
i!ðn� iÞ!ðiþ 1Þ! r

i ð7Þ

Fig. 1(a) and (b) show the graphs of the first 10 radial polynomi-
als of ZMs and OFFMs respectively.

We observe that the radial polynomials of ZMs, PZMs and
OFMMs involve a number of factorial terms, which are inherently
faced with the problem of computation difficulty, especially with
the increasing of the degrees of polynomials.

3. The weighted V-system

3.1. Overview

The V system of degree kðk ¼ 0;1;2; . . .Þ is a complete orthogo-
nal function system consisting of a series of piecewise polynomials.
Song et al. [20,21] has applied it to study the similarity of geomet-
ric models. In this section, we give an overview of the V-system.
The detailed descriptions can be found in [20,21,7].

The V-system of degree k consists of two classes of functions.
The first class is the set of the first kþ 1 normalized Legendre poly-

nomials on the interval ½0;1� that denoted as fVi
k;1ðxÞg

kþ1
i¼1 , and the

function generator of Gk ¼ fVi
k;2ðxÞg

kþ1
i¼1 . The second class of V sys-

tem is the set of functions generated by the multiscale squeezing,
shift and duplication of Gk defined as

Vi;j
k;nðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
2n�2

p
Vi

k;2 2n�2 x� j�1
2n�2

� �� �
; x 2 j�1

2n�2
; j
2n�2

� �
;

0; otherwise;

(

for n ¼ 3;4; . . . ; i ¼ 1;2; . . . ; kþ 1 and j ¼ 1;2; . . . ;2n�2. Conse-

quently the family of functions fVi
k;1g [ fVi

k;2g [ fVi;j
k;ng is called the

V system of degree k.
For simplicity, we denote the basis functions of V system as

fvnðxÞ;n ¼ 1;2; . . .g throughout this paper.

3.2. The weighted V-system

The starting point of this paper is to replacing the traditional
high-degree radial polynomials by piecewise polynomials with
low-degree polynomials. The V-system introduced in Section 3.1
is normalized orthogonal on the interval ½0;1�, i.e.,R 1
0 vnðxÞvmðxÞdx ¼ dnm. Each basis function in theV-systemof degree
k is a piecewise k degree polynomial. We observe that the degree of
polynomials can be fixed on a small number if we apply the V-
system to an orthogonal transformation. This can greatly reduce
the computational complexity. However, the V-system does not

keep orthogonality in polar coordinate, i.e.
R 1
0 vnðrÞvmðrÞrdr – dnm.

Therefore, The V-system cannot be used for constructing the ORIMs
directly. To solve this problem, we have applied the Gram–Schmidt
orthogonalization algorithm (as shown in Algorithm1) to transform
the original V-system into aweighting V-system. In Algorithm1, we
denote the nth basis function as vnðrÞ and wvnðrÞ; ðn ¼ 1;2; . . . :Þ
respectively.

Algorithm 1. The weighted Gram–Schmidt orthogonalization

Require: vnðrÞ; n ¼ 1;2; . . .
Ensure: wvnðrÞ;n ¼ 1;2; . . .

1: m R 1
0 v1ðrÞv1ðrÞrdr

2: wv1ðrÞ  v1=
ffiffiffiffiffi
m
p

3: while i 6 n do
4: v 0  v i

5: for j from 1 to i� 1 do

6: hj  
R 1
0 v iðrÞwv jðrÞrdr

7: v 0  v 0 � hjwv j

8: end for

9: m R 1
0 v

0ðrÞv 0ðrÞrdr
10: wv i  v 0=

ffiffiffiffiffi
m
p

11: end while

W. Chen, Z. Cai / J. Vis. Commun. Image R. 34 (2016) 146–152 147



Download English Version:

https://daneshyari.com/en/article/528937

Download Persian Version:

https://daneshyari.com/article/528937

Daneshyari.com

https://daneshyari.com/en/article/528937
https://daneshyari.com/article/528937
https://daneshyari.com

