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a b s t r a c t

Pattern matching is a fundamental problem in computer vision, and image and video processing. Exhaus-
tive-search equivalent algorithms yield the same results as exhaustively searching all patterns in the
image but significantly faster. In this paper, we propose a novel exhaustive-search equivalent algorithm
that is combined with a number of state-of-art algorithms to provide a significantly faster alternative in
the problem of finding nearest pattern according to a predefined distance measure. Our technique also
shows high resilience to both blurring and JPEG compression types of noise. This is demonstrated in
the paper with results from over 15 million runs for each compared algorithm.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Template matching or pattern matching is a fundamental prob-
lem in computer graphics, computer vision, signal processing, im-
age and video processing, with a wide variety of applications such
as video block motion estimation [1], image based rendering [2],
image inpainting [3], object detection [4], super resolution [5], tex-
ture synthesis [6], texture edge extraction [7], image filtering [8],
image summarizing [9], and even image compression [10].

The template matching problem can be defined as follows: gi-
ven an N ¼ n � n pixels image sub-window q (called Template
or Patch) find either the most similar patch to it in the image, or
all patches p where the distance between p and q is below a certain
threshold T according to a predefined dissimilarity measure. The
basic algorithm for solving this problem is full search or exhaus-
tive-search, in which the distance between q and all template-
sized sub-windows in the image (overlapped) is computed and
we return either the patch with the smallest distance or all patches
with distance below T, according to the instance of the problem we
are considering.

In this work we are interested in the first instance where only
the closest patch is required and many number of queries is done
on the same image, as this is the interest of most of the applica-
tions that require template matching (however, all algorithms pre-
sented in the paper can be used for the two instances of the pattern

matching problem). This has important implication on our evalua-
tion method of algorithms, as the most important property we re-
quire is exact fast evaluation of many number of queries on the
same image, so a relatively slow initialization of an algorithm is
acceptable as long as the total time (initialization + query process-
ing) is fast compared to the respective times of other algorithms.

In this paper we propose a novel exhaustive-search equivalent
pattern matching algorithm that shows significant speed-ups over
current state of art algorithms. This is done through combining a
novel pattern rejection and pattern evaluation order scheme with
rejection ideas from other current state of art algorithms. Our algo-
rithm shows very high resilience to blurring noise and medium
resilience to JPEG compression noise, the results are demonstrated
through experiments that included more than 15 million runs for
each measured algorithm, using the dataset introduced in [11]. It
should be noted that the results introduced here cannot be directly
compared in numbers with those on [11], as the application is dif-
ferent, also in that paper they used a hand-computed input thresh-
old, where here there is no input from user and the process is
completely autonomous.

2. Related work

There is a huge history of work in accelerating pattern matching
process, methods can be classified into two broad categories: Exact
and Approximate pattern matching. A complete review is beyond
the scope of this article, the reader might refer to [12] for extensive
reviews. Here we are only interested in exact methods and will
give a brief overview on them.
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One of the simplest and earliest trails to accelerate Exact pat-
tern matching is Partial Distortion Elimination (PDE) [13] which
simply terminates the evaluation of the current candidate sub-
window as soon as the current value of norm is guaranteed to ex-
ceed the current minimum distance.

Fast-Fourier transform-based approaches [14] have also been
traditionally used for accelerating pattern matching in the L2 norm,
especially for large pattern sizes. The idea is based on observing
that the L2 norm between two M pixels-sized sub-windows X, Y
can be written as

kX � Yk2
2 ¼ kXk

2
2 þ kYk

2
2 � 2 �

XM

i¼1

xi � yi ð1Þ

FFT allows fast computation of the third term
PM

i¼1xi � yi in the
frequency domain using the correlation theorem. kXk2

2 is calculated
for the all sub-windows in the image using fast incremental tech-
niques like Summed Area Tables [15] or Box-Filtering [16],kYk2

2 is
computed once where Y is the input query.

Projection Kernels (PK) based algorithms [17, 18, 19] are based
on the idea that we can get approximate value of the distance
dðX � YÞ (where d is a norm) by projecting both X and Y into a
number of basis vectors U ¼ fu1; . . . ;ukg, generally if U are mutu-
ally orthonormal it can be shown that:

dðX � YÞP
Xk

n¼1

1
dðunÞ

dðXT un � YT unÞ ð2Þ

this provides a lower bound on the actual distance value between X,
Y. The algorithm works by providing very fast method of projecting
all image sub-windows to U, then when examining candidates, it
keeps summing the values of dðXT un � YT unÞ (assuming U are unit
vectors) and rejects the candidate once the sum exceeds the current
minimum or the input threshold value. In all these methods U are
basis vectors of the Walsh–Hadamard transform.

Low Resolution Pruning (LRP) [20] is based on the idea of trans-
forming sub-windows in the image into a lower resolution vari-
ants, by summing the pixel values of partitions of the sub-
windows of size M, this is repeated for T levels of resolution, after
that an upper bound on the value of dðX � YÞ (where d is an Lp

norm) is established for every resolution level t, assuming min is
current minimum distance or input threshold value, as follows

dðX � YÞ 6 M
tðp�1Þ

2p �min ð3Þ

As shown in [11] LRP has the same underlying structure as PK
but with different U and lower bounding function.

Incremental Dissimilarity Approximations Algorithm (IDA) [21]
is based on the idea of partitioning each candidate sub-window
into a number r of disjoint sets by defining a partition P of set
S ¼ fS1; . . . ; SMg, using this partitioning it is able to establish a low-
er bound on the value dðX � YÞ (where d is an Lp norm), at level k
we have

dðX � YÞP
Xk�1
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The right side of the right hand side of the inequality represents
the source of the speed-up as it is an estimation of the rest of the
distance that is not actually calculated (the calculated part is the
left side). So a candidate is rejected at the point when right hand
side of the inequality exceeds current minimum distance or input
threshold value min.

Tree-based Hierarchical methods have long been used for exact
pattern matching problems, as it resembles a special case of the fa-
mous Nearest Neighbour (NN) problem which has been exten-
sively studied in computer science (see [12] for a recent
example), a recent survey on exact hierarchical tree structures

for accelerating pattern matching is [22], the problem with all
these methods is that their performance deteriorates significantly
as the dimensionality (here, the size of query template) increases.
This is illustrated in [22].

Another approach [23] was making use of the sequential over-
lap of image sub-windows to decrease the computational complex-
ity of the process through eliminating redundant similarity
computations of sequentially overlapped regions in both the query
template and image sub-windows. The main drawback of this
method is that it assumes sequential overlap in the query tem-
plate, however in many cases and for many applications this is
not the case and query templates may be totally different or from
different parts from the image.

3. Norm ordered matching

3.1. Derivation

We represent each N ¼ n � n pixels image sub-window as an N
dimensional vector X ¼ ½x1; . . . ; xN�T , which is represented as a
point in an N-Dimensional space RN as shown in Fig. 1.

Let dðpÞ be a norm defined over the vector space RN , so dðp� qÞ
represents the dissimilarity measure between the two N-Dimen-
sional points p; q derived from the norm d.

Since d is a norm, it satisfies the triangle inequality [24], so we
have:

jdðpÞ � dðqÞj 6 dðp� qÞ ð5Þ

This splits into two inequalities

dðpÞ � dðqÞ 6 dðp� qÞ ð6Þ
� ðdðpÞ � dðqÞÞ 6 dðp� qÞ ð7Þ

Eq. 6 can be written as:

dðpÞ 6 dðqÞ þ dðp� qÞ: ð8Þ

If m is the current minimum distance to input query q as in
Fig. 1, and for a candidate sub-window p we found that (as the case
for the cx points in the figure):

dðpÞ > dðqÞ þm: ð9Þ

Comparing Eqs. 6 and 9, we can simply find that m < dðp� qÞ so
we can directly reject p without any further calculations, as it can-
not improve the current minimum m.

In the same manner, Eq. 7 can be written as:

Fig. 1. Each m-Dimensional vector is represented by a point. ax; bx; cx represent
image sub-windows (candidate matches), q is the query template. m is the current
minimal distance.
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