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a b s t r a c t

In this work, we discuss when two users are able to exchange multimedia content and when that
exchange is always possible. Two thresholds are of interest, a threshold for percolation and a threshold
for full connectivity. To derive these thresholds, when discussing the bond percolation, we consider not
only four directions, upper, right, left, and lower, but also more directions like upper-right, lower-right,
upper-left, lower-left. In addition, small structures are proposed to help obtain the necessary conditions
for percolation and full connectivity. We find that if the probability of four directions being open is
greater than 0.3118 or the transmission radius of every node is longer than 1:52d=k, we can find a cross-
ing path in our network and the percolation ensues. Furthermore, if that is greater than 0.3799 or the
transmission radius of every node is longer than 1:579d=k, a fully-connected network graph exists for
sure.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, percolation theorem is widely adopted to
explain under what condition the connectivity in an observed phe-
nomenon is possible. Percolation theorem can not only apply to the
areas such as chemistry and physics, but also in the field of wire-
less network, which draws much attention recently [1]. With the
help of percolation theorem, much research effort is devoted to
discussing the conditions of establishing connection [2–5] and
related issues such as the capacity of wireless network [6], node
failure problems [7], broadcasting [8] and so on. In this work, we
focus ourselves on the discussion of when two nodes in a wireless
network can communicate with each other is possible in the same
context. When two nodes in a wireless network can communicate
with each other is of great importance and this is directly related to
the success of a wireless network. Gilbert [2] first described the
connectivity in a wireless network and proved that a wireless ad

hoc network exists a phase-transitions behavior. However, in his
model, the interference between nodes is not taken into account.
Later, Dousse et. al. [4] discussed when the full connectivity is pos-
sible if the interference between nodes is present. In [4], the con-
nectivity between two adjacent sub-squares means nodes in
these two sub-squares can communicate one another and the con-
ditions for percolation were proposed accordingly. The resulting
graph describing how sub-squares are connected is unidirectional.
That is, in that graph, if two sub-squares are connected, all nodes in
these two sub-squares are connected. Later, Chang and his col-
leagues [5] further extended [4] to the situation where that graph
is directional. In this situation, nodes in a sub-squares can commu-
nicate with all nodes in its adjacent sub-square but not the other
way around. As indicated in Chang et al. [5], the transmission
radius of a node specified in [4] is more than necessary to achieve
full connectivity in a network. Under a certain condition, a smaller
transmission radius of a node can still make the full connectivity in
a network possible. Nevertheless, the common assumption of
[2,4,5] is that the directions of connection are limited to the right,
upper, left and lower directions. Considering the omnidirectional
transmission, we relax the directions of connection to further
include the upper-right, lower-right, upper-left and lower-left
directions and a sub-square can connect to one or more adjacent
sub-squares among its eight surrounding adjacent sub-squares.

In this paper we will use the same method as [4,5] to divide a
wireless network into many sub-squares of size d=k� d=k. Under
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the assumption of being populated [4,5], we propose a theorem to
state when a wireless network is percolated based on the contrived
small structures, which are first proposed in this work to help
establish the conditions for percolation and full connectivity. The
small structures proposed in this work are the most influential
ways of connection to the adjacent sub-squares during the compu-
tation of the probability of a crossing path from the left to the right
of the network. With the help of small structures, we are able to
lower bound that probability, and based on the derived lower
bound, the critical probability of having an open sub-edge and
the corresponding critical transmission radius are found. We find
that when the probability of having an open sub-edge is no less
than 0.3118 and the transmission radius is no less than
1:5202d=k, a wireless network percolates. Being percolated only
tells us when two arbitrary might be able to exchange information
but there is no guaranteed. Two arbitrary nodes can exchange their
information for sure if and only if the network is fully connected.
Thus, in this work, we establish the conditions to have a
fully-connected network. When the probability of having an open
sub-edge is no less than 0.37992 and the transmission radius is
no less than 1:5792d=k, all nodes in the network are connected.
The extensive computer simulation is conducted and the results
show the accuracy of the proposed theorem. This paper is orga-
nized as follows. First, we will review some prior arts in
Section 2. In Section 3 we will introduce the system model with
lattice construction. In Section 4 we will derive the conditions for
percolation and use a simple method to find the critical value.
The condition for full connectivity will be shown in Section 5. In
Section 6, the simulation results are shown to demonstrate the
accuracy of the proposed Theorem 1 followed by the concluding
remark in Section 7.

2. Related works

Here we briefly review the results obtained in [2,4,5].
Gilbert [2] described the connectivity in a wireless network and

proved that a wireless network exists a phase-transition behavior
based on the continuum percolation theorem. Node i and node j
with radius r are said to be connected if ji� jj 6 r, where j � j
denotes the distance between two nodes. Under the definition of
connectivity between two nodes, the phase transition can occur
with the proper choice of r. In addition, there exists a critical value
of r, say rC . When r is no less than rC , we will have a fully-connected
wireless network. Otherwise, the wireless network is partitioned.

In [4], the authors used a way to map the continuous network
graph to a discrete square lattice and the conditions for percolation
in a network can be found by percolation theorem. In other words,
we can use discrete networks to simulate continuous networks,
e.g., bond percolation or site percolation [9]. In [4], authors divided
a network into many finite smaller squares and further divided
every finite small network into smaller sub-squares. The length
of each sub-square is d=k. So every finite square is divided into

k2 sub-squares of size d=k� d=k. There are four sub-edges in every
sub-square. A particular sub-edge in a sub-square being open or
not depends on whether the transmission range of a node in that
sub-square could fully cover the adjacent sub-square which shares
this sub-edge with that sub-square. In [4], when the transmission
is no less than
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d=k, all four sub-edges of a sub-square are open.
Under this condition, full connectivity ensues when each
sub-square contains at least one node.

The mutually full coverage of two adjacent sub-squares is
assumed in [4]. Under this assumption, all nodes in two adjacent
sub-squares can connected to one another if the constraint on
the transmission radius is met, and hence, the network graph of
connectivity is deemed as being undirected. Hence, the symmetric

routings, such as AODV [10], which assume that the same routing
path is used for the source and the destination to exchange infor-
mation, fit well in such an environment. However, this assumption
is not always true. The source may use a route and the destination
may take another one to send their one. This assumption underlies
DSR [11]. This situation happens when not all nodes in two adja-
cent sub-squares can connect to one another. As a consequence,
the network graph of connectivity is viewed as a directed graph.
Chang and his colleagues [5] developed two theorems to answer
when the network is percolated and when the network is fully con-
nected in such a situation. Authors in Chang et al. [5] adopted sim-
ilar approaches as Dousse et al. [4] and found that if there are at
least four nodes in a sub-square, and the probability that a
sub-square is closed is less than 0.5, then the network is perco-
lated. In addition, under being populated, if the probability that a
sub-edge of a sub-square is open is larger than 0.3822, then the
network is fully connected almost surely. In this work, we further
explore the same questions under the situation that a sub-square
can connect to one or more of its eight neighboring sub-squares.
This would be even more realistic than [5], which assumed that a
sub-square can only connect to one of four direct adjacent
sub-squares, which share sub-edges with this sub-square.

3. System model

The main idea is to divide the whole network into many
squares, which are further divided into smaller sub-squares. By
the analysis of the properties of sub-squares, we can find the
desired results for the finite squares and then, induct the results
for the entire network.

First, we construct a square lattice L over an infinite plane. Let the
length of the square lattice L be d. We distribute nodes into the infi-
nite plane following the Poisson point process in R2 with density k.
Second, we divide the square lattice L into smaller squares called

sub-squares. The length of every sub-square is d=k. So there are k2

sub-squares in the square lattice L as shown in Fig. 1. In addition,
the dual lattice of L, called L0 is obtained by shifting L d=2 horizon-
tally and vertically as shown in Fig. 1. We use dual lattice L0 to sup-
port the lattice L in some situation. We have to introduce the
following definitions to help develop the desired results:

Definition 1. A square is said to be populated if all its sub-squares
contain at least one node.

Definition 2. The sub-edge is said to be open if the following con-
ditions are fulfilled:

� The corresponding adjacent sub-square contains at least one
node.
� The transmission coverage covers the corresponding adjacent

sub-square completely.

The two definitions define the connectivity for one sub-square
to the adjacent sub-squares [4]. By these definitions we can deter-
mine that whether a node can connect to another node in the adja-
cent sub-squares or not.

Definition 3. A random set of points X � R2 is said to be Poisson
process of density k > 0 on the plane if it satisfies the conditions:

� For mutually disjoint domains of R2;D1; � � � ;Dk, the random vari-
ables XðD1Þ; � � � ;XðDkÞ are mutually independent, where XðDÞ
denote the random number of points of X inside domain D.
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