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a b s t r a c t

In this article, we introduce a class of variational models for the restoration of images that are polluted by
Rician noise and/or blurring. The novel energy functional consists of a convex fidelity term and a noncon-
vex higher-order regularization term. The regularization term enables us to efficiently denoise piecewise
smooth images, by alleviating the staircasing effects that appear in total variation based models, and to
preserve details and edges. Furthermore, we incorporate our nonconvex higher-order model with spa-
tially adaptive regularization parameters; this further improves restoration results by sufficiently
smoothing homogeneous regions while conserving edge parts. To handle the nonconvexity and nons-
moothness of our models, we adopt the iteratively reweighted ‘1 algorithm, and the alternating direction
method of multipliers. This results in fast and efficient algorithms for solving our proposed models.
Numerical experiments demonstrate the superiority of our models over the state-of-the-art methods,
as well as the effectiveness of our algorithms.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The last few decades have seen an advancement in the tech-
niques for magnetic resonance imaging (MRI). However, noise cor-
ruption still frequently occurs during the image acquisition
process. The noise occurs in the measured magnitude image, where
the real and imaginary components are corrupted by zero-mean
uncorrelated Gaussian noise with the same variance. Therefore,
noise in the magnitude MRI image is modeled by a Rician distribu-
tion [1], whose probability density function is as follows:

Pðr; m;rÞ ¼ r
r2 exp � r2 þ m2
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where I0 is a modified Bessel function of the first kind with order
zero. In this article, we consider the restoration of images corrupted
by Rician noise and/or blurring.

Let u : X! R be an image defined on X � R2, where X is a
bounded open domain with a compact Lipschitz boundary. The
format of the measured degraded image f under Rician noise and
blurring is given by, [2],

f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAuþ g1Þ2 þ g2

2

q
;

where A is a known blurring operator, and g1 and g2 represent zero-
mean uncorrelated Gaussian noise of standard deviation r > 0.

In order to reconstruct a clean image u from the noisy data f,
several models have been developed within a variational frame-
work. First, Basu et al. [3] derived a log-likelihood term from the
Rician distribution, and incorporated it into the anisotropic diffu-
sion process of Perona–Malik [4], with the aim of denoising diffu-
sion tensor MRI images. Moreover, Getreuer et al. [5] proposed a
variational model that uses the negative log-likelihood term as a
data fidelity term and total variation (TV) regularizer, for both
Rician noise removal and deblurring,
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q
, and k > 0 is a parameter. The TV regularizer,

introduced in [6], has been widely used in image processing, owing
to its edge preserving property. Unfortunately, this minimization
(1) is not convex, due to the fidelity term E, so the authors also pro-
posed a convex approximation of the model (1). However, their con-
vex model is complex, and its mathematical properties are difficult
to derive. Recently, Chen and Zeng [2] proposed a new convex
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variational model, by inserting a quadratic penalty term into the
model (1), which is given by

inf
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where 0 6 u 6 255, and k is constant parameter. This model is

strictly convex with rP r0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
255
3902 supX f

q
when A is the identity

operator, and it is convex with rP r0 when A is a blurring opera-
tor. With rP r0, the authors proved the existence and uniqueness
of solutions for problem (2), and numerical results demonstrated
that the model (2) performs better than the model (1) for restoring
images corrupted by Rician noise. From now on, we will call this
convex model the ‘‘TV model.”

On the other hand, Liu et al. [7] proposed a nonconvex total
variation model for Rician noise removal, incorporated with a spa-
tially adaptive regularization parameter, as follows:
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where K is a symmetric Gaussian kernel satisfying KðxÞ ¼ Kð�xÞ andR
KðxÞdx ¼ 1, � denotes a convolution operator, and c 2 ð0;1Þ. Here,

the parameter k : X! R is defined as a spatially varying function,
depending on the pixel coordinate x ¼ ðx1; x2Þ. Despite the noncon-
vexity, this model takes advantage of local image features, and has
achieved remarkable denoising results.

A variational model for image restoration usually consists of
a data fidelity term and a regularization term. The regulariza-
tion term encourages a smooth output image and eliminates
noise in the presence of noise. Various convex regularizers
have been proposed, such as TV [6] and higher-order regular-
izers [8–12]. Higher-order regularizers have been proposed in
order to overcome the staircasing effects of TV regularizer,
and so to effectively denoise piecewise smooth images. On
the other hand, many studies [13–18] have demonstrated that
nonconvex regularizers are superior to convex ones, due to
their edge preserving property. In particular, the authors in
[16] illustrated that the quality of TV denoising results can
be improved by replacing the ‘1 norm of gradient by the non-
convex ‘q norm, for 0:5 < q < 0:8. Nikolova et al. [17] also
showed that various types of nonconvex regularizers are
preferable to convex ones for the preservation of discontinu-
ities in an image. Moreover, Oh et al. [18] recently proposed
a nonconvex higher-order regularizer, and demonstrated its
superiority over convex higher-order regularizers as well as
nonconvex TV-based regularizers.

In the last decade, many efficient algorithms for minimizing
nonconvex optimization problems have been proposed, with or
without convergence analysis. For examples, gradient descent
based methods [19,20], the half-quadratic algorithm [21,22], and
the graduated nonconvexity continuationmethod [17] are the clas-
sical approaches for nonconvex optimization. Recently, Candés
et al. [23] proposed the iteratively reweighted algorithm, for solv-
ing compressive sensing problems that involve a nonconvex log
function instead of the ‘1-norm. Furthermore, Ochs et al. [24]
extended this to the iteratively convex majorization–minimization
method, for solving nonsmooth nonconvex optimization problems.
Furthermore, they provided various versions of iteratively
reweighted algorithms, with convergence analysis under certain
conditions.

In general, the regularization parameter k in a variational model
controls the smoothness of the restored image. That is, small k
leads to oversmoothing of small features, such as edges and details,
while large k results in leftover noise in homogeneous regions.
Therefore, in order to balance the quality and efficiency of image
denoising, the spatially adaptive regularization parameter (SARP)

approach has been employed in many works [7,25–29]. Recently,
the SARP approach was utilized for Rician noise removal in [7],
based on ideas from [26]. Their optimization algorithm is based
on the gradient descent method, and regularization parameters
are updated at each iteration, which results in a slow convergence
to reach a solution. In our work, we propose a novel strategy for the
automated selection of spatially adaptive parameters, based on the
local expected value estimator, like [27,29]. In addition, we present
a fast and efficient optimization algorithm for our model integrated
with SARP.

In this paper, we introduce a class of variational minimiza-
tion models for the restoration of images that are corrupted
by Rician noise and/or blurring. The models consist of a convex
fidelity term and a nonconvex higher-order regularization term,
which enables us to effectively denoise piecewise smooth
images while also preserving edges. Furthermore, we propose
an automated adjustment strategy for the spatially adaptive
parameter, based on an idea in [27,29]. This further improves
the quality of restored images, by preserving fine scales while
denoising homogeneous regions. In order to solve nonconvex
nonsmooth problems, we utilize the iteratively reweighted algo-
rithm [24] and the alternating direction method of multipliers.
This results in fast and efficient algorithms. Numerical experi-
ments demonstrate the superiority of our proposed models over
existing methods, as well as the efficiency of our proposed
algorithms.

The outline of the rest of this paper is as follows. In Section 2,
we recall various regularizers proposed in prior works, and the
iterative reweighted ‘1 algorithm in [24]. In Section 3, we propose
a variational minimization model that involves a nonconvex
higher-order regularization term. In Section 3.1, an optimization
algorithm for solving the proposed model is illustrated. In addition,
in Section 4, we combine our proposed model with SARP, and we
describe an automated selection strategy for the SARP. In Section 5,
numerical experiments are provided for our proposed models,
along with comparisons with state-of-the-art methods. Finally, in
Section 6, we summarize our work and provide some comments
about future work.

2. Preliminaries

2.1. Convex and nonconvex regularizing functionals

First, Rudin et al. [6] introduced the TV regularizer for an image
denoising model, as

min
u

k
2

Z
X
ðu� f Þ2 dxþ

Z
X
jrujdx;

where k > 0 is a tuning parameter. This TV model can remove
noise while also preserving edges well, but it tends to create
piecewise-constant images, even in regions with smooth transi-
tions of intensity values in the original image. It is often called
staircasing effects.

In order to alleviate such artifacts, a higher-order version of TV
was proposed in [9,11], which uses second-order derivative infor-
mation. In particular, Lysaker et al. [11] proposed the following
image denoising model:

min
u

k
2

Z
X
ðu� f Þ2 dxþ

Z
X
jr2ujdx;

where r2u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
x1x1
þ u2

x1x2
þ u2

x2x1
þ u2

x2x2

q
. This model reduces the

staircase effects, and performs efficiently for the denoising of piece-
wise smooth images. However, this higher order TV results in less
well preserved edges than TV in practice.
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