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a b s t r a c t

In many practical problems, such as geological exploration, forging technology and medical imaging,
among others, it has been detected that the scattered data are usually arranged in parallel lines. In this
paper, a new approach to construct a bivariate rational interpolation over triangulation is presented, based
on scattered data in parallel lines. The main advantage of this method comparing with the present inter-
polation methods have two points: (1) the interpolation function is carried out by a simple and explicit
mathematical representation through the parameter a; (2) the shape of the interpolating surface can be
modified by using the parameter for the unchanged interpolating data. Moreover, a local shape control
method is employed to control the shape of surfaces. In the special case, the method of ‘‘Barycenter Value
Control’’ is studied, and numerical examples are presented to show the performance of the method.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The construction method of curves and surfaces and their math-
ematical description is a key issue in Computer-Aided Geometric
Design (CAGD). There are many ways to tackle this problem
[4,6,7,10,19,24–26,29,30], for example, the polynomial spline
method, the NURBS method and the Bézier method. These methods
are applied widely in the shape design of industrial products.
Specifically, most of the polynomial spline methods are the inter-
polating methods. However, one of the disadvantages of the poly-
nomial spline method is that the local shape can not be modified
for the interpolating surfaces while interpolating data is un-
changed. The Non Uniform Rational B Splines (NURBS) and Bézier
methods are the so-called ‘‘no-interpolating type’’ methods; this
means that the constructed curve and surface do not fit with the
given data, so the given points play the role of the control points.
Thus, in order to construct the interpolating functions required
for CAGD, the following conditions must be satisfied: (a) the inter-
polating functions achieve simple and explicit representations, so
that these representations can be conveniently used for both prac-
tical application and theoretical analysis; (b) the parameters of
constructed curves and surfaces can be modified without changing
the given data.

In recent years, the study of univariate rational spline interpola-
tion with parameters has received attention in the literature, and
many results have been established [1,2,9,11,12,20,21,27].
Motivated by the univariate rational spline interpolation, the bivar-

iate rational spline, which has a simple and explicit mathematical
representation with parameters, has been studied. Since the param-
eters in the interpolation function are selective according to the
control constrains, the constrained control of the shape becomes
possible. In [14–16], several bivariate spline interpolations have
been constructed over rectangular mesh, and properties have been
also derived, such as, the sufficient conditions of ‘‘down-
constrained’’ and ‘‘up-constrained’’ for the shape control of interpo-
lating surfaces are obtained in [14], the matrix expression and the
bounded property of interpolation function and the properties of
the integral weight coefficients are derived in [15], the properties
of the integral weight coefficients and the stability of interpolation
are discussed in [16]. In [31], convexity control of a bivariate ra-
tional interpolating spline surfaces is studied. In [23], the preserv-
ing positivity of a rational bicubic spline interpolation with
parameters over a rectangular grid is discussed. But, in many prac-
tical problems, the rectangular mesh is very difficult to be calcu-
lated, because only the scattered data can be obtained to achieve
an interpolation. Thus, it is necessary to construct the bivariate
interpolation function over the triangulation lattice. There are
many publications contributing to the bivariate spline interpolation
over triangulation. For example, in [6,7,18], the structure of bivari-
ate spline spaces is investigated, and the important applications of
Bernstein–Bézier techniques in CAGD are discussed; in [8], a char-
acterization of smoothness of polynomial pieces on adjacent trian-
gles, without using Bernstein-Bézier techniques, is proved; in [5],
the approximation order from the space S :¼

Qq
k;D of piecewise

polynomial functions is studied; in [3], an adaptive quasi-interpo-
lating quartic spline based on a uniform quasi-interpolating scheme
is constructed over a regular triangular mesh, and the adaption of
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the scheme to surfaces of varying geometric complexity can be
locally defined, etc. The all above bivariate spline interpolations
over triangulation are in fact polynomial interpolations. In [30],
the structure of bivariate rational spline spaces on arbitrary trian-
gulation is investigated by using the methods of smoothing cofac-
tor, and some commonly used methods for studying multivariate
spline functions, such as B-spline method, B-net method and the
integral methods, etc., are clearly explained. Here we are concerned
with bivariate rational spline interpolations with a simple and ex-
plicit mathematical representation, which can be modified by using
new parameters. In many practical problems, such as geological
exploration, forging technology and medical imaging, among oth-
ers, it has been detected that the scattered data are usually arranged
in parallel lines, as shown in Fig. 1, where the triangulation is sim-
ply obtained using a few number of control parameters. In this pa-
per, the construction problem of the bivariate spline interpolation
over a triangulation mesh is considered. To solve the problem, a
new approach is proposed by using a constructed interpolation
function comprising a simple and explicit mathematical represen-
tation with the new parameter a. This parameter can be modified
by using the parameter being achieved for the unchanged interpo-
lating data. Also, a local shape control method of interpolating sur-
face is developed.

This paper is arranged as follows. In Section 2, a new bivariate
rational spline interpolation with parameter is constructed over
triangulation, using the scattered data in parallel lines. Section 3
is about some properties of the interpolation function, including
the properties of the basis function and the bounded property. Sec-
tion 4 deals with the error estimates of the interpolation function.
In Section 5, the shape control method of the interpolating surface
is given, in the special case, the ’’Barycenter value control’’ is stud-
ied, and various numerical examples are presented to show the
performance of the method.

2. Definition of interpolation function

Let fðxi; yi; fi; diÞ; i ¼ 1;2; . . . ;ng be the given scattered data
arranged in parallel lines: e1; e2; . . . ; em, where fi ¼ f ðxi; yiÞ, and
di ¼ @f ðxi ;yiÞ

@x (see Fig. 1).
For a triangular domain T1 ¼ MV1V2V3 ,with vertices

fVi ¼ ðxi; yiÞ; i ¼ 1;2;3g and y1 ¼ y2, let c11 ¼ \V3V1V2 be the an-
gle between lines V3V1 and V1V2, and c12 be the angle between line
V2V3 and the extension line of V1V2 (see Fig. 2).

Denoting h ¼ x2 � x1; l ¼ y3 � y1. For any point Q in the line
V1V2, let b ¼ \V3QV2 be the angle between lines V3Q and QV2,
thus, V1Q ¼ x3 � x1 � l cot b, and for any point Vðx; yÞ in the line
V3Q ; cot b ¼ x�x3

y�y3
. Let h ¼ x3�x1�l cot b

h , and g ¼ y�y1
l . A rational cubic

function is defined over the interval ½x1; x2� as [12]

pðxÞ ¼ ð1� hÞ3af1 þ hð1� hÞ2V þ h2ð1� hÞW þ h3f2

ð1� hÞaþ h
; ð1Þ

where

V ¼ ð2aþ 1Þf1 þ ahd1;

W ¼ ðaþ 2Þf2 � hd2;

with a > 0. Obviously, the interpolation function pðxÞ on ½x1; x2� is
unique for the given data ðxi; fi;diÞ; i ¼ 1;2 and the parameter a,
and which satisfies

pðxiÞ ¼ fi; p0ðxiÞ ¼ di; i ¼ 1;2:

Using the x-direction interpolation function pðxÞ, we define the
bivariate rational interpolation function Pðx; yÞ on the triangular
domain T1 as follows:

PT1 ðx; yÞ ¼ ð1� gÞpðxÞ þ gf3: ð2Þ

It is called the bivariate rational interpolator on the triangular do-
main T1.

Defining PT1 ðx3; y3Þ ¼ f3, then

lim
y!y�3

PT1 ðx3; yÞ ¼ f3:

Thus, the interpolation function satisfies

PT1 ðxi; yiÞ ¼ fi; i ¼ 1;2;3:

Let T2; T3 and T4 be the triangular domains which have com-
mon edges V1V3; V1V2 and V2V3 with T1 respectively. Denoting
X� ¼ T1

S
T2
S

T3
S

T4, then the subregion X� of interpolating re-
gion X is called an element of subdivision (see Fig. 2).

For the continuity of the interpolation function defined by Eq.
(2) in the whole interpolating region X, it is only necessary to con-
sider the continuity in an element X� of subdivision. Then by the
symmetry of T2 and T4, it is only necessary to show the continuity
of the interpolation function in lines V1V2 and V1V3, respectively.

Similar to Eq. (2), we can define the bivariate rational interpola-
tion functions over T2 and T3.

PT2 ðx; yÞ ¼ ð1� gÞf1 þ gp�ðxÞ;

where

p�ðxÞ¼ 1
ð1�hÞa� þh

ð1�hÞ3a�f4þhð1�hÞ2ðð2a� þ1Þf4þa�h�d4Þ
h

þh2ð1�hÞðð2þa�Þf3�h�;d3Þþh3f3
�
;

with

h ¼ x1 � x4 � l cot b

h�
; cot b ¼ x� x1

y1 � y
; h� ¼ x3 � x4;

g ¼ y� y1

y3 � y1
; a� > 0:

PT3 ðx; yÞ ¼ ð1� gÞf5 þ gpðxÞ;
Fig. 1. Triangulation of interpolating region X.

Fig. 2. An element X� of subdivision.
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