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a b s t r a c t

In this work, an optimized nonparametric learning approach for obtaining the data-guided sampling dis-
tribution is proposed, where a probability density function (pdf) is learned in a nonparametric manner
based on past measurements from similar types of signals. This learned sampling distribution is then
used to better optimize the sampling process based on the underlying signal characteristics. A realization
of this stochastic learning approach for compressive sensing of imaging data is introduced via a stochastic
Monte Carlo optimization strategy to learn a nonparametric sampling distribution based on visual sal-
iency. Experiments were performed using different types of signals such as fluorescence microscopy
images and laser range measurements. Results show that the proposed optimized sampling method
which is based on nonparametric stochastic learning outperforms significantly the previously proposed
approach. The proposed method is achieves higher reconstruction signal to noise ratios at the same com-
pression rates across all tested types of signals.
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1. Introduction

The compressive sensing (CS) research community is very
active and its core research can be grouped into three major
research areas: sparsity reconstruction basis [1–4], image recon-
struction [1,3,5,4,6,7] and generalization of the sampling proce-
dure. While less studied in recent years compared to
reconstruction basis and image reconstruction methods, the design
of the sampling procedure can have a significant impact on CS per-
formance for practical imaging applications such as robotic vision
and medical imaging [8,9], where the objects of interest have
structured characteristics, thus making the sampling procedure a
worthwhile area to study. Traditional CS-based systems employ a
sampling scheme that sample the entire scene in the same manner
regardless of the underlying data. However, such an approach is
limiting for many practical applications, which involve distinct
regions of interest in some basis, since it does not consider data
importance. In many cases such region of interest are of greater
interest for analysis purposes, one is motivated to obtain higher
quality reconstructions for those regions than the background
regions. In recent years, there has been interest in optimizing the

CS sensing probability density for improving reconstruction perfor-
mance in imaging applications. These methods range from fixed
variable density sampling [10–12], to data guided sampling [13–
21]. In particular, recent data-guided methods attempted to
improve CS performance by using predefined parametric
approaches to data-guided CS sampling without learning.

In applications such as laser range imaging and laser scan imag-
ing systems, the data acquisition process can be a very time con-
suming process since the image is typically acquired
pixel-by-pixel for the entire scene given the point-based acquisi-
tion characteristics of such systems. Data acquisition time becomes
even more significant for situations where high spatial resolution
is required. As such, optimizing the acquisition mechanism is of
high importance for measurement applications such as laser range
imaging and laser scan imaging. One important characteristic of
such systems is that they allow for random sampling at any point
in the scene. Motivated by this, we proposed an approach for opti-
mizing the acquisition scheme for such systems to greatly improve
efficiency while providing strong image quality and detail preser-
vation. In this work, we aim to address the limitations of the pre-
viously data-guided sampling approaches by introducing a
stochastic nonparametric learning approach to learn and optimize
sampling distribution for improving further CS performance. The
learning is based on statistical properties of past measurements
from similar types of signals. The learned sampling distribution
is then used to better optimize the sampling process based on
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the underlying signal characteristics for signals of a similar type. By
learning a more optimized data-guided sampling probability dis-
tribution, the proposed method overcomes the key limitation asso-
ciated with existing data-guided methods that makes use of a
predefined parametric sampling probability distribution.

The rest of the paper is organized as follows. Related work asso-
ciated with CS sampling are described in Section 2. The proposed
method of learning sampling distributions in a nonparametric
manner to guide sampling is provided in Section 3. Model valida-
tion is discussed in Section 4, and a summary and future research
is provided in Section 5.

2. Related work

Current literature in optimizing CS sampling can be generally
grouped into two main categories: (i) unguided variable sampling
and (ii) data-guided sampling. One of the first attempts at optimiz-
ing CS sampling involved the use of a predefined variable sampling
distribution where the sampling frequency varies based on the
sampling location. For example, representations of MRI images
have nonrandom structures since most of the image energy is con-
centrated close to the representation domain origin [10].
Therefore, it was proposed [10–12] to consider a variable density
random under-sampling which will sample more near the origin
and less in the periphery of the representation domain. The pro-
posed sampling function was to adjust the probability density
according to the power of distance from the origin [10] in the
Fourier domain. Based on the same concept, it was proposed in
[11] to consider variable density sampling in the spatial domain.
Image reconstruction was evaluated [11] with different sampling
patterns (radial, logarithmic and random). Similarly [10], the sam-
pling function was to adjust according to the concept of dense
sampling near the origin and sparse periphery. The coherence
between the sparsity and variable density sensing bases was eval-
uated [12] confirming that the reconstruction performance was
maintained. Even though these methods shows an improvement
to CS performance, it is static and not optimized.

In some hardware implementation scenarios, random access to
each pixel in the 2D grid can be challenging. Structured com-
pressed sensing was proposed [22,23] where separable (rows and
columns) matrices are appropriate. The structured sensing matrix
is constructed from random patterns of rows and columns. The
non-uniform sensing approaches are static, considering general
representation domain properties and hardware constraints in
order to improve reconstruction performance.

Another approach to optimizing CS sampling is data adaptive
sampling, where the sampling procedure is guided by the underly-
ing data characteristics. There was an attempt to reduce the num-
ber of measurements by dividing the scene to blocks [13] and
sample each block by uniform distribution random sampling with
different number of samples based on average block saliency level.
An improved block CS method was proposed [14,15] where an ini-
tial sampling process is performed, uniformly for the entire image.
compressibility of each block is estimated based on the initial sam-
pling phase. In the second sampling phase the number of samples
for each block is adjusted based on the compressibility estimation
of the block. This method [14,15] uses samples from both phases
therefore is more efficient compared to previous block CS [13].
Block CS approaches are missing saliency information due to low
resolution related to averaging block saliency and sampling within
the block at the same rate. In addition, these methods are sampling
based on an arbitrary block size which reduces sampling effective-
ness by missing region of interest within the block.

Sequential adaptive CS techniques have been proposed in a
recent work for optimizing the support of the sensing matrix

[16]. It has been proposed [16] to construct the measurement
matrix adaptively through an iterative process in order to select
appropriate rows of the sensing matrix for emphasizing the
non-zero vector coefficients. This sequential process iteratively
searches for non-zero coefficients by multiple sensing matrices
starting with a full ranked matrix which measures and considers
the entire coefficient vector (including all zero coefficients) and
iteratively converges to a low support matrix. This sequential
approach is very time consuming as the CS reconstruction process
is repeated every iteration. In addition, this approach does not
account for underlying data directly, it searches for low support
of measurement matrix in order to eliminate zero coefficients.
Moreover, this method uses acquired data from the entire image
in the iteration process. In another study of this adaptive method,
an assumption of an ‘‘infinite number of observations is available’’
[17] is taken for constructing a sampling matrix with minimum
support for noisy signals while ignoring an important goal of image
reconstruction based on small subset of sampled locations. The
adaptive CS method was compared mathematically to uniform dis-
tributed sampling [24] showing that there is not a significant
advantage to adaptive CS universally, where the entire image infor-
mation is considered equally important. Even though the analysis
seems to be accurate, this hypothetical case does not represent
real-world practical situations where regions of interest exist in
the signal as opposed to having all regions in the image being
equally important.

Based on the notion that regions of interest exist in the signal
that contain more information than other regions, a
saliency-guided approach was proposed [20,21] for improving
signal-to-noise ratio (SNR) in compressive fluorescence micro-
scopy. Using the previously developed model in data-guided sam-
pling for CS [18], the sampling process adapts to the underlying
characteristics of the image based on a saliency-based sampling
pdf where regions of interest have a higher probability of being
sampled as opposed to sampling the entire image based on a uni-
form distribution. The results in these studies show that such an
approach can yield noticeably improved reconstructions compared
to existing sampling approaches at the same sampling rates. An
improved multi-scale saliency-guided CS approach [19] was devel-
oped based on this concept as well, offering an efficient approach
for compressive robotic laser range sensing. This model adapts
the sampling process gradually and smoothly between regions
with varying levels of saliency. This method uses a parametric log-
arithmic function that maps levels of saliency in the underlying
data to sampling probabilities to better guide the sampling pro-
cess. It was shown that this approach achieves greater perfor-
mance in comparison to the recently published saliency-guided
sparse measurement model [18] where images are contaminated
with high noise levels. The main limitation of this method is that
a static parametric function is used to guide sampling based on
the underlying signal characteristics, which may not be well suited
across all types of signals.

More recently, a new data-guided sampling strategy was pro-
posed in the form of learning based sampling, where the goal is
to learn a sampling distribution based on past measurements of
similar types of signals. In the work presented in [25], the sampling
distribution function in the sampled frequency domain is learned
directly based purely on the distribution of energy at specific data
locations in the frequency domain. This learned sampling distribu-
tion was then used to sample signals with similar signal character-
istics in the CS process. It was demonstrated in [25] for the purpose
of compressive OCT that such an approach has potential to greatly
increase signal reconstruction compared to other sampling
approaches. However, this approach is very specific and limited
to cases where direct learning from sampled data based only on
data location is possible.
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