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a b s t r a c t

The skeleton is an essential shape descriptor providing a compact representation of a shape that can be
used in the context of real object recognition. However, due to the discretization, the required properties
to use it for graph matching (homotopy to the shape, consequently connectivity, thinness, robustness to
noise) may be difficult to obtain simultaneously. In this paper, we propose a new skeletonization algo-
rithm having all these properties, based on the Euclidean distance map. More precisely, the algorithm
cleverly combines the centers of maximal balls included in the shape and the ridges of the distance
map. Post-processing is then applied to thin and prune the resulting skeleton. We compare the proposed
method to three fairly recent methods and demonstrate its good properties.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let us consider the recognition of 2D shapes, which could result
from an image segmentation step. To deal with this recognition
problem, one of the methods consists of extracting a set of features,
referred to as signature, on the shape to be recognized (to be clas-
sified) and on the shapes of the database, or on representative
shapes of the database, and comparing such signatures.

The goal here is to represent the shape with as little informa-
tion as possible while keeping the overall appearance of the
shape. In particular, the first properties that we expect for a
skeleton is to maintain the topological properties of the initial
shape and its geometric properties (ramifications and elongated
parts for example).

To compare skeletons extracted from shapes, the idea is to con-
vert skeletons into graphs (branches being edges and, junction

points and ending points being vertices) and then to perform graph
matching. In fact, a graph is a representation more compact than
the shape itself. Moreover, many effective graph matching meth-
ods have been proposed in the literature [1–3].

However, in order to easily convert the skeleton into a graph, it
is necessary for this skeleton to have at least the following proper-
ties, which are not obviously obtained when the shape is repre-
sented by points in Z2:

� it has to be connected: if the skeleton is not connected, the
graph obtained from this skeleton will not be connected.
Consequently, the graph and the shape will not have the same
topology;
� it has to be thin (1-pixel width): a thick skeleton generates path

extraction problems.

Moreover, to obtain effective and pertinent matchings in the
context of reals objects, it is necessary to construct skeletons
robust to noise. Note that this last property is rarely satisfied by
the algorithms of the literature, for which the slightest deforma-
tion of the border usually generates a branch [4].

Let us consider now skeletonization algorithms. We can classify
them as follows:
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� skeletonization methods based on thinning [5–9]
In an intuitive manner, it consists of ’’peeling’’ the shape for the
purpose of obtaining a set of connected points with a single
pixel width, which preserves the topology of the shape. In other
words, thinning is an operation that aims to remove
non-terminal simple points in a parallel or sequential manner.
The main advantage of these algorithms is the preservation of
the shape topology [5,6].
� skeletonization methods based on a distance map [10–15]

The objective is to identify the key points on the distance map,
where each pixel is labeled with the value of its distance to the
nearest background pixel. Different distance maps approximate
or compute exactly the Euclidean distance:
– Chamfer (approximation of the Euclidean distance by local

mask) [16];
– squared Euclidean distance [17];
– signed Euclidean distance [18];
– honeycomb (based on hexagonal grid) [19].

The next step is to search for the medial axis defined as the set of
centers of maximal balls contained in the shape. A maximal ball is
a ball contained in the shape not entirely covered by another ball
contained in the shape.
The extraction of the medial axis is a reversible operation if the
information on distance of each point to the nearest background
pixel is retained. Hence, the original shape can be obtained with
the medial axis [13]. The main advantage is that the skeleton is
centered and the reconstruction is possible. However, such algo-
rithms do not guarantee connectivity.

As stated previously, object recognition requires a shape repre-
sentation which is invariant to minor changes, but the main draw-
back of the skeleton is its sensitivity to noise on the shape
boundary. This is the reason why it is customary to use a regular-
ization procedure, which can be of two types:

� smoothing the boundary of the shape: this is done before the
computation of skeleton points, for the purpose of removing
unwanted boundary noise and discretization artefacts
[20,12]. In this case the result is rather biased as the boundary
smoothing changes the boundary location. Consequently, the
skeleton position will be different from the one computed
directly on the shape without smoothing. The difficulty here
is differentiating between significative boundary information
and noise.
� deleting unwanted branches: this is a post-process called prun-

ing [21–23]. It is based on local or global salience measures. The
difficulty here is removing ’’noisy branches’’ without removing
any meaningful parts of the skeleton.

Even if it could belong to the category of skeletons based on dis-
tance map, the proposed algorithm, called Digital Euclidean
Connected Skeleton (DECS), computes maximal balls but also
exploits the distance map in a novel way to connect centers of
maximal balls to each other. The main contribution is the propaga-
tion and fusion of centers of maximal balls taking into account the
ridges of the distance map, which are obtained by filtering this
map. The obtained skeleton is then connected, thin and robust to
noise. This is brought out by experiments in Section 4.1.

Before describing the proposed method in detail, in Section 3,
we detail in Section 2, three methods from the literature we con-
sider as state of the art for their properties: parallel thinning based
on critical kernels, namely Bertrand and Couprie’s method [5],
extraction of the Euclidean skeleton based on a connectivity crite-
rion, namely Choi’s method [10] and the Hamilton–Jacobi skeleton
method [12]. These methods will be compared to our method in
Section 4.

2. Methods used for comparison

We chose to compare our method (DECS) against three existing
methods: Bertrand and Couprie’s method is a recent parallel thin-
ning method, Choi et al.’s method and Hamilton–Jacobi Skeleton
are two methods based on distance maps, like the proposed
method.

2.1. Bertrand and Couprie’s method [5]

This is a recent parallel thinning method based on critical ker-
nels. The main idea is to gradually thin the shape until stability.
This algorithm is based on a general framework for the study of
parallel thinning in the context of abstract complexes. The princi-
pal is to parallely delete simple points, which are points that may
be deleted without changing the topology of the shape. This defini-
tion is based on the collapse operation which is a classical tool in
algebraic topology and which preserves the topology. It is based
on the fact that, if a subset Y of X contains the critical kernel of
X, then Y has the same topology as X. We can observe in Fig. 1,
an example of skeleton obtained with Bertrand and Couprie’s
method.

Note that although Bertrand and Couprie’s method has no
parameter to tune, like most thinning algorithms, but experiments,
in Section 4, will show its shortcomings in terms of resistance to
noise.

2.2. Choi et al.’s method: Euclidean skeleton based on a connectivity
criterion [10]

This method generates a connected Euclidean skeleton. This
algorithm starts with the computation of the 8-connected Signed
Sequential Euclidean Distance map (8SSED) [18].

The next step is the extraction of the skeleton based on a con-
nectivity criterion using a threshold q. The complexity of this algo-
rithm is linear with respect to the number of pixels in the image. As
illustrated in Fig. 2, the degree of branching of the skeleton
decreases as q increases. This raises the issue of finding the appro-
priate threshold value with respect to the desired application. This
method is interesting because it has been used for graph matching
[3]. Moreover, it is a skeletonization method based on a distance
map, like DECS.

2.3. Siddiqi et al.’s method: Hamilton–Jacobi Skeleton [12]

Like the previous method, Siddiqi et al.’s algorithm [12] gener-
ates a Euclidean skeleton with a single pixel width. Their method
relies on an initial continuous modeling of the Euclidean distance

Fig. 1. Skeleton of a letter obtained with Bertrand and Couprie’s method.
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