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a b s t r a c t

In this paper, an effective image deblurring model is proposed to preserve sharp image edges by sup-
pressing the stair-casing arising in the total variation (TV) based method by using the anisotropic total
variation. To solve the difficult L1 norm problems, the split Bregman iteration is employed. Several syn-
thetic degraded images are used for experiments. Comparison results are also made with total variation
and nonlocal total variation based method. Experimental results show that the proposed method not only
is robust to noise and different blur kernels, but also performs well on blurring images with more detailed
textures, and the stair-casing effect is well suppressed.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

It often happens that an acquired image suffers from the blur-
ring due to atmospheric turbulence, an out of focus camera, or rel-
ative motion between the camera and the object. Noise may be
introduced into the image because of measurement errors, quanti-
zation and imperfection in the recording and transmission med-
ium, and digitization, etc.

A blurred noisy image is often considered as the convolution of
a clear image with blur kernel plus the additive noise:

f ¼ Auþ n ð1:1Þ

where f is the degraded image, u is the clean image to be estimated
from f, n is the additive white Gaussian noise, and A is a convolution
operator. Solving (1.1) is ill-posed due to the large condition num-
ber of A. Any small perturbation on the degraded image f may lead
to the solution A�1 f to be very far away from the true image u [1,2].
Many different approaches have been proposed for the deblurring
problem.

One of the main methods is to use the regularization based
methods, which minimize some cost functionals to find the solu-
tion. Tikohonov regularization is a simplest one, which minimizes

an energy containing a data fidelity term with a L2 norm regular-
ization term. When A is a convolution operator, the problem can
be solved in the Fourier domain, this is the so-called Wiener filter
[3]. However, the edges of recovered image are often smoothed.
Later, a total variation (TV) based regularization was proposed in
[4] to overcome this problem.

TV=ROF model : min
u
kukBV þ

l
2
kAu� fk2

2 ð1:2Þ

where kukBV ¼
R

X jrujdxdy is the total variation of u. TV has been
widely used in image processing because of its advantage on pre-
serving edges. However, it is well-know that TV yields unwanted
stair-casing [5–7], which would cause that the restored image
would lose some texture and corners.

Parallel to the TV method, the anisotropic diffusion method can
also be applied to enhance the image edges [8].
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This method stops the diffusion at edges, which can be described by
steep gradients, while treating flat regions as in the uniform model.
However, anisotropic diffusion method has the drawbacks that the
solutions are in fact smooth and it has the same problem of speckles
as the isotropic diffusion [9,10], because the slow oscillations can-
not be penalized sufficiently by the quadratic regularization term.
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To use the advantages and modify the drawbacks of TV and ani-
sotropic diffusion methods, a new anisotropic regularization and
diffusion method has been implemented for the restoration of
polygonal shapes with sharp edges and corners. This new anisotro-
pic regularization is the so-called anisotropic total variation (ATV)
which is developed by Esedoglu and Osher [11]. For more detail
therein, see [12]. The anisotropic total variation is defined for all
u 2 BVðR2Þ as

ATVðuÞ ¼
Z

X
ðjrxuj þ jryujÞdxdy ð1:3Þ

Model (1.3) has been successfully applied to image denoising [13–
15,27], inpainting [17] and 2D bar codes restoration [16].
However, up to now, few of works have been done in image deblur-
ring by using ATV. In this paper, an image deblurring method based
on ATV is proposed. In addition, a unified ATV restoration model for
simultaneous image denoising and deblurring is established.
Although there exists many other methods (e.g., anisotropic local
likelihood approximations, nonlocal total variation and 3D
Transform-Domain Collaborative Filtering) which can obtain the
high quality image with abundant structure and features [31–36].
Here, we only focus on the anisotropic total variation.

The TV functions (e.g., ROF model) have been shown to be com-
putationally difficult to solve by conventional methods due to their
nonlinearity and non-differentiability. Although many authors
have proposed improved schemes, such as time marching scheme,
primal–dual variable strategy, fixed-pointed iteration algorithm
(for reviews see [23,30]), the optimization problem of (1.2) is still
difficult to solve due to the existence of L1 norm based term. In
[18], Bregman iteration method was introduced for the nondiffer-
entiable TV function, and has been proved to be spectacularly suc-
cessful for L1 norm minimization problems [19]. Later, a linearized
Bregman iteration was proposed to improve the function of the
Bregman iteration [20] (detailed theory see [21,22]). Recently, split
Bregman iterations were developed in [23], which extended the
application of the Bregman iteration and the linearized Bregman
iteration to more general L1 norm minimization problems [24,25].

In this paper, we proposed a split version of the anisotropic total
variation for simultaneous image denoising and deblurring, which
is very efficient in persevering edges and corners of the image with
fewer stair-casing effect arising in ROF model [4]. Instead of solving
the Lagrange equations directly, we introduce a new unconstrained
problem by applying operator splitting and penalty techniques to
take replace of the original minimizing issue.

The rest of the paper is organized as follows. In Section 2, a brief
introduction to split Bregman iteration is presented. In Section 3,
an unified ATV model based on split Bregman iteration is derived.
In Section 4, the applications of the model in Section 3 are
extended to image denoising and image deblurring based on differ-
ent linear operator A. Numerical results are illustrated in Section 5.

2. Split Bregman iteration

In this section, we give a brief introduction about how the
Bregman framework derive from Bregman iteration to solve the L1
norm optimization problem, for detailed theory about Bregman iter-
ation see [18].

2.1. Bregman distance and Bregman iteration

Consider two convex energy functions, EðuÞ and HðuÞ. The min-
imization problem to be considered is

min
u

EðuÞ þ HðuÞ ð2:1Þ

The Bregman iteration comes from the concept of ‘Bregman
distance’.

Dp
Eðu;ukÞ ¼ EðuÞ � EðukÞ � ðp;u� ukÞ ð2:2Þ

Then the Bregman iteration for (2.1) is

ukþ1 ¼min
u

Dp
Eðu;ukÞ þ HðuÞ ð2:3Þ

ukþ1 ¼min
u

EðuÞ � EðukÞ � ðp;u� ukÞ þ HðuÞ ð2:4Þ

In order that (2.4) is well defined for k + 1, it must hold:
pkþ1 ¼ pk �rHðukþ1Þ. Then

pkþ1 ¼ pk �rHðukþ1Þ ð2:5Þ

When HðuÞ ¼ k
2 kAu� fk2

2 and A is linear, the Bregman iteration of
(2.4) and (2.5) is equivalent to the following simplified version:

ukþ1 ¼min
u

EðuÞ þ k
2
kAu� f þ pkk2

2 ð2:6Þ

pkþ1 ¼ pk þ Aukþ1 � f ð2:7Þ

2.2. Split Bregman iteration

Consider the general L1 problem, assume EðuÞ ¼ jdj and
d ¼ UðuÞ, then (2.1) can be modified by

min
u;d
jdj þ HðuÞ such that d ¼ UðuÞ ð2:8Þ

Here, assume HðuÞ and jUðuÞj to be convex function, also assume
UðuÞ to be differentiable. To solve this problem, first convert it into
an unconstrained problem:

min
u;d
jdj þ HðuÞ þ l

2
kd�UðuÞk2

2 ð2:9Þ

If we let WðuÞ ¼ jdj þ HðuÞ, (2.9) becomes the Bregman iteration,
then use (2.6) and (2.7) we get

ðukþ1; dkþ1Þ ¼ min
u;d
jdj þ HðuÞ þ l

2
kd�UðuÞ � bkk2

2 ð2:10Þ

bkþ1 ¼ bk þ ðUðukþ1Þ � dkþ1Þ ð2:11Þ

(2.10) and (2.11) are the two iteration models of the split Bregman
iteration.

In order to implement (3.7), we must minimize the subprob-
lems of u and d respectively with the following steps:

Step 1 : ukþ1 ¼ min
u

HðuÞ þ l
2
kdk �UðuÞ � bkk2

2 ð2:12Þ

Step 2 : dkþ1 ¼ min
d
jdj þ l

2
kd�Uðukþ1Þ � bkk2

2 ð2:13Þ

To compute d, Osher uses soft shrinkage operators as:

dkþ1
j ¼ shrinkðUðuÞj þ bk

j ;1=lÞ ð2:14Þ

where

shrinkðx; cÞ ¼ x
jxj � maxðjxj � c;0Þ

The split Bregman iteration has several same good properties as
Bregman iteration which have been discussed and proved in
[18,19]. Also, it can converge very quickly when applied to the L1
regularization problem and avoid the problem of numerical insta-
bilities that occur as l!1 when using continuation methods.
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