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a b s t r a c t

The numerical methods of total variation (TV) model for image denoising, especially Rudin–Osher–
Fatemi (ROF) model, is widely studied in the literature. However, the Sn�1 constrained counterpart is less
addressed. The classical gradient descent method for the constrained problem is limited in two aspects:
one is the small time step size to ensure stability; the other is that the data must be projected onto Sn�1

during evolution since the unit norm constraint is poorly satisfied. In order to avoid these drawbacks, in
this paper, we propose two alternative numerical methods based on the Lagrangian multipliers and split
Bregman methods. Both algorithms are efficient and easy to implement. A number of experiments
demonstrate that the proposed algorithms are quite effective in denoising of data constrained on S1 or
S2, including general direction data diffusion and chromaticity denoising.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Variational denoising methods have become popular in recent
years, for instance, the well known Rudin–Osher–Fatemi (ROF)
model [26] and its various extensions [11,16,19]. The scalar ROF
model for gray-scale image is:

min
u

Z
X
jrujdxþ k

2

Z
X
ðf � uÞ2dx; ð1Þ

where f is the observed noisy image and k is a positive balance
parameter. Here, the first term is called total variation (TV) which
is widely used as a regularization term in variational image process-
ing approaches [1]. In the past decades, a large amount of fast
numerical schemes instead of the gradient descent methods are pro-
posed to handle the TV based minimization models. For instance, the
Chambolle’s fast dual method [7], the alternating split Bregman
method [17], the operator splitting method [12,20,22], the alternat-
ing direction method of multipliers (ADMM) [15,24], the primal–
dual method [8,13] and some other methods [2,3,25,23,33].

Let us now write down the n-dimensional ROF model con-
strained on Sn�1. Assume X � R2 is an open bounded domain,
and f : X! Sn�1 � Rn is the observed noisy data and u : X! Rn

is a vectorial function. The general problem can be formulated as:

min
u

EðuÞ ¼
Z

X
krukdxþ k

2
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X
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with x ¼ ðx1; x2Þ denotes the coordinates in image domain X,

juj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1 þ u2
2 þ � � � þ u2

n

q
and

kruk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jru1j2 þ jru2j2 þ � � � þ jrunj2

q
:

In fact,
R

X krukdx is a generalization of color TV [4]. Remark that the
problem is nonconvex since the constraint juj ¼ 1 is not convex.

The above model can be used for direction data diffusion where
the direction data has unit norm. An example in image processing
field is chromaticity denoising. Although most of the variational
denoising models use Right-Green-Blur (RGB) color model, there
are some methods use other color models especially Chromatic-
ity-Brightness (CB) color model. In the CB color model, the chroma-
ticity component u and the brightness component B can be
calculated as follows:

B ¼ juj :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

1 þ u2
2 þ u2

3

q
; C ¼ u

juj :
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Note that the chromaticity C is a vector lives on the unit sphere in
R3 : S2 ¼ fn 2 R3 : jnj ¼ 1g. Therefore chromaticity is belonging to
non-flat image feature differs from other features defined in Euclid-
ean space. The CB model is known to be closer to human perception
which is widely used in color image representation and modeling.
In [9], it is shown that using CB color model gives better color con-
trol and detail recovery for color image denoising compared with
other color models.

In literatures, some methods are introduced to handle the min-
imization problems on Sn�1. Tang et al. in [29,30] proposed to de-
noise chromaticity or general direction data via p-harmonic maps
in liquid crystals. The classical gradient descent method is used
to solve the corresponding Euler–Lagrange equation which is lim-
ited by small time step and converges slowly. Recall that the
gradient descent method for problem (2) is the flow [9]:

@u
@t
¼ div

ru
kruk

� �
� ukruk þ kðf � hf;uiuÞ: ð3Þ

More generally, Tschumperl and Deriche in [31] studied the ortho-
normal vector sets diffusion problem by /-function regularization
[1] and the related negative gradient flow. In [32], Vese and Osher
changed the constrained p-harmonic problem:

min
juj¼1

Z
X
krukpdx;

as an unconstrained one:

min
V

Z
X
r V
jV j

� �����
����

p

dx:

Numerically, the gradient descent method with implicit scheme is
applied to evolve V based on polar coordinates. With similar idea,
Cecil et al. in [6] proposed numerical methods for minimization
problems constrained on S1 and S2 by technique based on the angle
formulation, and numerically gradient descent method is used. In
[10], Chan and Shen used vectorial ROF model to denoise non-flat
data. Numerically, they developed fixed-point iteration. Bresson
and Chan in [5] extended Chambolle’s dual algorithm to vectorial
ROF model, meanwhile, they generalize the algorithm to denoise
the chromaticity component in color image. In [18], Haehnle and
Prohl proposed discrete finite element based algorithms to approx-
imate the L2 gradient flow of the Mumford–Shah–Euler functional
for unit vector fields and applied the algorithms in color image
inpainting. In [34], Goldfarb et al. proposed new gradient descent
algorithms for the p-harmonic flow problem on spheres, which
searches the step along a curve that lies on the sphere and can pre-
serve the pointwise sphere constraints. The method is generalized
by Wenand Yin in [35] to handle the general orthogonal constraints.

In this paper, we consider two alternative numerical algorithms
to solve problem (2) constrained on Sn�1. Our main idea is to split
the original problem into easier subproblems by introducing auxil-
iary variables. In Algorithm 1, we first use the standard Lagrangian
method to handle the pointwise unit norm constraint, and then re-
lax the energy by adding an auxiliary variable. In Algorithm 2, we
first derive an equivalent problem with two auxiliary variables and
three constraints, and then use the split Bregman method to han-
dle the constraints. In both methods, all the involved subproblems
are easy to solve.

The outline of this paper is as follows. In Section 2, we propose
our Algorithm 1 based on Lagrangian multipliers method. In Sec-
tion 3, we develop our Algorithm 2 based on the so called split
Bregman method. The numerical results including direction data
diffusion on S1 and chromaticity denoising on S2 are reported in
Section 4. Finally, we conclude the paper in Section 5.

2. Algorithm 1 – Lagrangian multipliers method

In this section, we propose the Algorithm 1 to solve problem (2).
Since the pointwise constraint uðxÞ ¼ 1 is equivalent to
juðxÞj2 � 1 ¼ 0, by using Lagrange multipliers method on the con-
straints we get an equivalent unconstrained problem:

min
u;l

E1ðu;lÞ ¼
R

X krukdxþ k
2

R
X ju� fj2dx

þ 1
2

R
X lðxÞðjuðxÞj2 � 1Þdx

( )
; ð4Þ

where lðxÞ is the Lagrange multiplier at point x 2 X. The problem is
not easy to solve since TV term is nonsmooth. In order to find an
efficient algorithm, we consider an approximate problem by adding
new variables such that the new problem is easy to solve. We add a
new variable v to approximate u and obtain an approximate
problem:

min
u;v;l

E2ðu;v;lÞ ¼
R

X krvkdxþ 1
2h

R
X jv � uj2dx

þ k
2

R
X ju� fj2dxþ 1

2

R
X lðxÞðjuj2 � 1Þdx

( )
; ð5Þ

where h is small enough to ensure that u almost equals v. In the fol-
lowing subsections, we will derive the formulas for updating u; l
and v in problem (5), respectively with alternating minimization
method.

2.1. Solving u

Fixing l and u, the subproblem for u is:

min
u

1
2h

R
X jv � uj2dx

þ k
2

R
X ju� fj2dxþ 1

2

R
X lðxÞðjuj2 � 1Þdx

( )
: ð6Þ

The corresponding Euler–Lagrange equation about u is:

1
h
ðu� vÞ þ kðu� fÞ þ lu ¼ 0: ð7Þ

Then we derive the closed-form solution of u:

u ¼ v þ khf
1þ khþ lh

: ð8Þ

2.2. Solving the Lagrange multipliers l

Taking derivative of E2 with respect to l and setting it to zero,
we get:

juj2 ¼ hu;ui ¼ 1; ð9Þ

for each x 2 X, where h�i denotes the inner product in R3. Taking the
inner product of (7) with u and using (9), we obtain the closed-form
solution of l:

l ¼ 1
h
hu;vi þ khu; fi � 1

h
� k: ð10Þ

Remark that the above formula (10) was also derived in [21] and
successfully used in colorization problems.

2.3. Solving auxiliary variable v

Fixing u, the subproblem for v is:

min
v

Z
X
krvkdxþ 1

2h

Z
X
jv � uj2dx; ð11Þ

which is a standard vectorial ROF model. Recall that many fast
numerical algorithm have been designed to solve the scalar ROF
model, see Section 1. These fast algorithms can be directly used to
solve vectorial ROF model when a channel by channel TV is used.
That is because in every channel the problem becomes a scalar
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