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a b s t r a c t

In this paper, a nonparametric statistical shape model based on shape probabilistic representation is pro-
posed for object segmentation. Given a set of training shapes, Cremers et al.’s probabilistic method is
adopted to represent the shape, and then principal components analysis (PCA) on shape probabilistic rep-
resentation is computed to capture the variation of the training shapes. To encode complex shape vari-
ation in training set, reduced set density estimator is used to model nonlinear shape distributions in a
finite-dimensional subspace. This statistical shape prior is integrated to convex segmentation functional
to guide the evolving contour to the object of interest. In addition, in contrast to the commonly used
signed distance functions, PCA on shape probabilistic representation needs less number of eigenmodes
to capture certain details of the training shapes. Numerical experiments show promising results and
the potential of the model for object segmentation.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Object segmentation is a fundamental task in image processing
and computer vision. Its essential goal is to extract desired objects
from the given images. Since the object and background may exhi-
bit very similar intensity characteristics in numerous real-world
applications, it is normally not enough to only use the low-level
information of the images, such as intensity, color or texture for
segmentation, especially when misleading information due to
occlusion, clutter and noises exist in the input images. This natu-
rally leads to a need for integrating prior knowledge such as shape
information into the segmentation process in order to improve
segmentation results. In this paper, by assuming that prior knowl-
edge given by a set of training shapes of expected objects, we focus
on the problem of how to exploit such shape priors for object
segmentation.

Level set methods were introduced by Osher and Sethian [1].
Since such methods allow implicit representation of the evolving
object boundary and automatic changes of its topology, level set
methods have become increasingly popular for image segmenta-

tion [2–3]. Recently, to segment images of low quality or with
missing data, level set based variational approaches have gained
significant attention toward the integration of shape prior into
the image segmentation processes [4–13]. Almost all these works
can be considered as a linear combination of two terms: a data-
driven term and a shape constraint term. Geometric active
contours model [14] and Chan-Vese’s model [15] have become
two popular data-driven terms to guide the motion of the active
contour. There are two ways to define the shape constraint term.
One is commonly defined by an explicit dissimilarity measure be-
tween the evolving contour and a given prior contour, and the
other is to estimate a statistical distribution from training shapes
to guide the evolving contour to the most likely shape of the esti-
mated distribution. Given a set of training shapes, one may impose
simple or more complicated distribution functions such as uniform
distribution [7], Gaussian distribution [16], or non-parametric esti-
mator [17] to improve segmentation results in the presence of
noise or occlusion. In applications, the distribution of training
shapes is generally not uniform distribution or Gaussian distribu-
tion due to a large variability of shape. Kernel density estimation
(KDE) is an efficient approach to model nonlinear distributions of
training shapes [12–13]. In this technique, the density function is
estimated by a sum of kernel functions. The kernel number is equal
to the size of the training data. When the training data set is very
large, the KDE suffers from high computational cost and becomes
intractable for subsequent use (e.g., in a real-time applications).
Reduced set density estimator (RSDE) was proposed by Girolami
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and He [18] to solve the above problem by providing a kernel
density estimator which employs a small subset of the available
data sample to provide similar levels of performance.

Shape is represented implicitly by signed distance function
(SDF), and can be easily integrated into level set variational meth-
ods as a shape constraint term. These representations have gained
much popularity in recent years [4–13]. The idea is to represent the
shape contour C by embedding it in a higher dimension level set
functional /, as follows:

/ðxÞ ¼
Distðx;CÞ; x 2 inðCÞ
0; x 2 C

�Distðx;CÞ; x 2 outðCÞ

8><
>: ; ð1Þ

where Dist(x,C) denotes the Euclidean distance from x to the closet
point on C, and out(C) and in(C) represent the regions outside and
inside of the contour C, respectively. The contour C can be recon-
structed from such representation by taking its zero level set
C = {x|/(x) = 0}. Hence, any shape in the plane corresponds to a un-
ique SDF. This shape representation is consistent with the level set
framework, and has its advantages since parameterization free and
easy handling of topological changes. However, the use of principal
component analysis (PCA) on a set of SDF embedding a set of sam-
ple shapes has two drawbacks:

1. The space of SDF is not a linear space, e.g., the mean shape and
linear combinations of sample shapes are typically no longer
SDF. Most existing works only consider very similar shape priors.

2. While the first few principal components are used to capture
the most variation on the space of SDF, they will not necessarily
capture the variation on the space of the embedded shape con-

tours. Therefore, in contrast to PCA on explicit shape contours,
PCA on SDF need to include a larger number of eigenmodes in
order to capture certain details of the sample shapes.

Recently, there has been significant research exploring methods
to solve these non-convex problems by using convex relaxation
methods [19–22]. In [20], Cremers et al. proposed a shape probabi-
listic representation (SPR) by relaxing the binary constraint and
allowing the binary function to take on values in the interval
[0, 1], defined as a mapping

q ¼ X! ½0;1�; ð2Þ

that assigns to every pixel x of the shape domain X � R2 the prob-
ability that this pixel is inside the given shape. In traditional defini-
tion of shape, pixels are part of the shape, and only take values 1
(members) or 0 (non-members). It can be described as
q:X ? {0, 1}. Based on the probabilistic definitions, it is easy to
get the shape region of the object ðqÞs ¼ fxjqðxÞP sg and the back-
ground of image ðqÞCs ¼ 1� ðqÞs by selecting a s e [0, 1]. In the
experiment, s is chosen as 0.5. It was shown that the space Q of
all probabilistic shapes forms a convex set, and the space spanned
by a few training shapes v = {q1, q2, � � �qN} forms a convex subset.
Arbitrary convex combinations of the set again correspond to a va-
lid shape. For example, the mean lðxÞ ¼ 1

N

PN
i¼1qiðxÞ; lðxÞ 2 ½0;1� is a

function which assigns to each point x e X the average of all prob-
abilities (Fig. 1). This shape probabilistic representation leads to
convex segmentation functional on convex shape spaces.

In this paper, we are building up on the above developments
and propose two contributions in order to overcome the discussed
limitations:

Fig. 1. Shape probabilistic representation versus signed distance functions. The dataset is taken from a training sequence of 151 consecutive silhouettes [20]. (a) is a 3D plot
of mean shape of training shapes based on SPR, and (b) shows the corresponding 2D plot, and the contour (blue) is traditional shape region defined by s = 0.5. (c) is a 3D plot of
mean shape of training shapes based on SDF, and (d) shows the corresponding 2D plot. The contour (blue) is zero level set on SDF. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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