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a b s t r a c t

A patch based image denoising method is developed in this paper by introducing a new type of image
self-similarity. This self-similarity is obtained by cyclic shift, which is called ‘‘circulant similarity’’.
Given a corrupted image patch, it can be estimated by incorporating circulant similarity into a weighted
averaging filter. By choosing an appropriate kernel as weight function, the patch filter is implemented by
circular convolution, and can be efficiently solved using fast Fourier transform. In addition, the circulant
similarity can be enhanced by using nonlocal modeling. We stack the similar image patches into 3D
groups, and propose a denoising scheme based on group estimation across the patches. Numerical experi-
ments demonstrate that the proposed method with local circulant similarity outperforms much its local
filtering based counterparts, and the proposed method with nonlocal circulant similarity shows very
competitive performance with state-of-the-art denoising method, especially on images corrupted by
strong noise.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The goal of image denoising is to faithfully reconstruct an image
x from its noise corrupted observation y ¼ xþ v, where v is com-
monly assumed to be additive white Gaussian noise with zero
mean and standard deviation r in literature. Image denoising is a
fundamental problem and an indispensable process for many
image processing and low level vision applications, while it pro-
vides an integral platform for investigating the statistical modeling
of natural images.

Earlier image denoising methods include Gaussian filtering [1]
and anisotropic diffusion [2,3]. The total variation (TV) minimiza-
tion [4] is a classical nonlinear anisotropic diffusion model by
minimizing an energy functional. Since natural images are highly
redundant, it is expected that they can be de-correlated and more
compactly represented in some transformed space. Wavelet trans-
form [5] is such a tool and it decomposes the input image into mul-
tiple scales, and at each scale some statistical modeling method
can be applied to suppress noise [6]. Principle component analysis
has also been used to learn locally adaptive transforms from the
image, and it has shown very good performance in local structure
preservation [7,8].

Since denoising is a typical ill-posed problem, the using of natu-
ral image priors to regularize the solution is critical to the success
of a denoising algorithm. It is widely accepted that natural image
gradients exhibit heavy-tailed distributions, which can be fitted
by Laplacian or hyper-Laplacian models [9,10]. The TV based meth-
ods [4] actually assume Laplacian distributions of image gradients.
Many statistical models of wavelet coefficients have been pro-
posed, such as generalized Gaussian [11] and Gaussian scale mix-
ture [12] models, etc. In [13], the authors used a mixture of
bivariate Laplacian probability density functions for the clean data
in the transformed domain. Later, Yu et al. [14] used multivariate
Gaussian priors of image patches for solving image inverse prob-
lems. Based on the fact that natural images can be sparsely repre-
sented in some domain, the sparse representation (SR) techniques
[15,16] perform nonlinear sparse coding to effectively exploit the
sparsity of natural images. SR and its variants have achieved
impressive denoising results [17,18]. The dictionary employed in
SR is crucial to the final denoising results. Owe to the seminal work
of KSVD [19], learning dictionaries from the natural images has
become a hot topic in image processing and computer vision
[20–22].

How to measure and exploit the similarity between image pix-
els is a critical issue in image denoising. Instead of using only the
spatial location to compute the similarity of neighboring pixels,
the well-known bilateral filtering method [23] computes both
the spatial and intensity similarities for pixel averaging. The semi-
nal work of nonlocal means (NLM) [24] brings image denoising
from the era of local similarity to the era of nonlocal self-similarity
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(NSS); that is, the similar pixels to a given pixel can be spatially far
from it. Inspired by the success of NLM, Dabov et al. [25]
constructed 3D cubes of nonlocal similar patches and conducted
collaborative filtering in the sparse 3D transform domain. The so-
called BM3D algorithm has been a benchmark in image denoising.
Mairal et al. [18] exploited the NSS via lp;q-norm simultaneous
sparse coding. Zontak and Irani [26] proposed an internal paramet-
ric prior to evaluate the nonlocal patch recurrence, and they
recently found that patch recurrence also holds across scales
[27]. The nonlocally centralized sparse representation model
developed by Dong et al. [17] shows very powerful denoising
performance. By assuming that the matrix of nonlocal similar
patches is of low rank, the low-rank minimization based methods
[28,29] have also achieved interesting denoising results.

In this work, we propose a new image denoising method by
exploiting the image local and nonlocal circulant similarity. We
observe that many small patches in natural images will show simi-
lar patterns after a certain cyclic shift. This local circulant similarity
can be used as a prior for image denoising. By using circulant shift,
the proposed model becomes very simple and relies solely on the
kernel circulant matrix. Moreover, the computational cost can be
much reduced by fast Fourier transform (FFT). In addition, circulant
similarity can be enhanced by using nonlocal techniques. We stack
the similar image patches into 3D groups, and propose a group
estimation method by performing circulant similarity along the
three dimensions. The proposed method with local circulant simi-
larity shows clear advantages over its local filtering based counter-
parts, while the proposed method with nonlocal circulant
similarity shows very competitive performance with the state-of-
the-art nonlocal based denoising method, especially on high noise
levels.

The rest of the paper is organized as follows. In Section 2 we
introduce local circulant similarity and propose a 2D patch
estimation method by using local circulant similarity. In
Section 3 we propose a 3D group estimation method by using
nonlocal circulant similarity for image denoising. In Section 4
we present experimental results to demonstrate the advantages
of the proposed model.

2. Denoising by local circulant similarity

2.1. Local circulant similarity

A natural image usually contains many local similar features
and nonlocal repetitive patterns, such as textures of background
and edges of object. Particularly, image patches often have local
circulant similarity. Circulant similarity is a special type of self-
similarity, which refers to that a patch shows similar pattern
after a certain cyclic shift of it. Such circulant similarity can be
measured by Gaussian kernel function j, which will be shown
in detail later. Denote by mk the maximum similarity between
the original patch and its cyclic shifted versions. We uniformly
extract 373,000 image patches (size: 9� 9) from 12 popularly
test images to show local circulant similarity exists widely in
natural images. As shown in Fig. 1, these patches are divided into
3 classes according to their degrees of circulant similarity: strong
circulant similarity (SCS, mk P 0:8), weak circulant similarity
(WCS, 0:8 > mk P 0:4), and no circulant similarity (NCS,
mk < 0:4). The proportions of SCS, WCS and NCS are 40.6%,
35.9%, and 23.6%, respectively. It can be observed that there exist
a lot of patches with strong or weak circulant similarities in
natural images. The SCS and WCS could be used as image priors
for image denoising, especially in the presence of severe noises.
Based on this insight, we present a novel patch estimation
method for image denoising.

2.2. Patch estimation

Denote by u the observed noisy image patch, u ¼ ½u0; . . . ;un�1�>.
Here, we stick to definitions for 1D signals for simplicity of the
notations. The extension to 2D and 3D is straightforward. We

define a shift operator Tl : Tlðv0; . . . ; vn�l�1;vn�l; . . . ;vn�1Þ ¼
ðvn�l; . . . ;vn�1;v0; . . . ;vn�l�1Þ, where l is the number of shifted ele-

ments to the right, and we have T0 ¼ T; Tnþl ¼ Tl. Let ui be the noisy
pixel value at position i. For arbitrary pixel uj 2 u, we build its

neighborhoods pj by patch cyclic shift, pj ¼ T ju. The estimated
pixel ûi by weighting uj can be described as:

ûi ¼ ai

Xn�1

j¼0

jðpi;pjÞuj ð1Þ

where the weight function jð�Þ measures the similarity between
the patches pi and pj, and ai acts as a normalizing constant
ai ¼ 1=

P
jjðpi;pjÞ. For simplicity, we omit the normalizing factors

ai from the equation. Thus the estimate ûi can be reformulated as

ûi ¼
Xn�1

j¼0

ujjðTiu; T juÞ ¼
Xn�1

j¼0

ujKi;j ð2Þ

By stacking all the pixels together, the patch estimate can be repre-
sented in a matrix–vector multiplication form

û0

..

.

ûn�1

2
6664

3
7775 ¼

K0;0 � � � K0;n�1

..

. . .
. ..

.

Kn�1;0 � � � Kn�1;n�1

2
6664

3
7775

u0

..

.

un�1

2
6664

3
7775

The above equation can also be written as

û ¼ Ku ð3Þ

Our motivation is that we want to encode the inner structure of
patch by cyclic shift. From the above equation, it can be seen that
the estimate û is fully depended on the kernel matrix K. Note that K
is a large n� n matrix, and the computational burden in matrix
calculation is prohibitively high. However, if weight function j is
chosen as a Gaussian kernel, then the matrix K with elements Ki;j

is a circulant matrix [30]. That is because Ki;j ¼ jðTiu;

T juÞ ¼ jðu; Tj�iuÞ, and Ki;j depends only on ðj� iÞmod n. In addi-
tion, Gaussian kernel is easier to adjust than other kernels (i.e.,
polynomial kernel), since it has only one parameter with an intui-
tive meaning. Based on the theory of circulant matrices [31], it is
clear that the K contains at most n distinct elements and therefore
it is often denoted by

K ¼ CðkÞ ¼ Cðk0; k1; . . . ; kn�1Þ ð4Þ

Fig. 1. Illustration of local circulant similarity.
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