

Available online at www.sciencedirect.com

Tetrahedron Letters 47 (2006) 2017-2020

Tetrahedron Letters

Chiral bidentate phosphabenzene-based ligands: synthesis, coordination chemistry, and application in Rh-catalyzed asymmetric hydrogenations

Christian Müller,^{a,*} Leire Guarrotxena López,^a Huub Kooijman,^b Anthony L. Spek^b and Dieter Vogt^a

^aDepartment of Chemical Engineering and Chemistry, Schuit Institute of Catalysis, Laboratory of Homogeneous Catalysis, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands ^bDepartment of Crystal and Structural Chemistry, Utrecht University, Utrecht, The Netherlands

> Received 29 November 2005; revised 2 January 2006; accepted 12 January 2006 Available online 7 February 2006

> Dedicated to Professor Arthur J. Ashe, III on the occasion of his 65th birthday

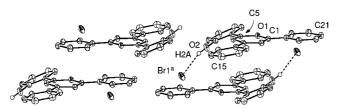
Abstract—Novel hydroxy-functionalized phosphabenzenes were synthesized, which provide the possibility to prepare chiral phosphabenzene—phosphites. These systems act as bidentate ligands toward rhodium centers and the corresponding metal complexes were applied in the rhodium-catalyzed asymmetric hydrogenation of prochiral substrates.

© 2006 Elsevier Ltd. All rights reserved.

Phosphabenzenes (phosphinines, phosphorines), the higher homologues of pyridines, have been known for many decades, due to the pioneering work of Märkl and Ashe in the late 1960s. 1,2 These heterocycles are planar, aromatic systems in which one -CH- group of the aryl moiety is substituted by an isoelectronic phosphorus atom, thus exhibiting lone pair electrons suitable for σ -coordination to a metal center.³ In comparison to aryl phosphines and aryl phosphites, which are frequently applied as ligands in metal-catalyzed reactions under homogeneous reaction conditions, 4 phosphabenzenes act qualitatively as σ -donor and π -acceptor ligands with electronic properties somewhat more similar to phosphites.⁵ However, their application in homogeneous catalysis is still limited or even neglected,5,6 despite the fact that very interesting results in terms of activity and selectivity were obtained in the hydroformylation of alkenes, as reported by Breit and co-workers. 6a,b Even though a few examples of chiral bidentate ligands based on phosphabenzenes have been reported

as well, no enantioselectivity in asymmetric catalytic reactions has been observed so far.⁷

We report here a synthetic route to novel hydroxy-functionalized phosphabenzenes, which can be easily converted into chiral, bidentate ligands. Results on their coordination chemistry and application in asymmetric hydrogenations are presented, and demonstrate a promising step forward in developing these truly unique phosphines to their full potential.


Reaction of the methoxy-functionalized pyrylium salts $1a/b^8$ with an excess of BBr₃ in CH₂Cl₂⁹ gave, in a clean and quantitative reaction, the corresponding hydroxy-substituted compounds 2a/b after aqueous work-up (Scheme 1).

The complete removal of the -CH₃ groups was confirmed by ¹H NMR spectroscopy. No resonances were observed by ¹⁹F NMR spectroscopy, suggesting loss of the BF₄ anion during aqueous work-up. In fact, the reaction with H₂O produced substantial amounts of HBr, which led to anion exchange of BF₄ for Br⁻, yielding quantitatively the pyrylium salts **2a/b** as red and yellow solids, respectively. Red crystals of **2a**, suitable for X-ray crystallography, were obtained by slow crystallization from methanol and the molecular structure is

Keywords: Phosphabenzenes; Phosphites; Homogeneous catalysis; Asymmetric hydrogenation; Rhodium.

^{*}Corresponding author. Tel.: +31 40 2474679; fax: +31 40 2455054; e-mail: c.mueller@tue.nl

Scheme 1. Synthesis of hydroxy-functionalized pyrylium salts.

Figure 1. Crystal packing of **2a** (displacement ellipsoid plot¹¹ at 30% probability level, H atoms excluded with exception of those involved in hydrogen bonds). Superscript a denotes symmetry operation 1-x, 1-y, -z. Interatomic distances (Å) and angles (°): $O2 \cdot ··Br1^a$: 3.1780(14), O1-C1: 1.349(2), O1-C5: 1.356(2), C1-O1-C5: 122.30(12); angles (°) between the central ring and the rings containing O2, C15, and C21 are 23.97(8), 9.98(8), and 1.32(8), respectively.

illustrated in Figure 1. It confirms not only the stability of the six-membered heterocycle under the applied harsh reaction conditions and the formation of the hydroxy-functionalized salt, but also the presence of a Br^- , rather than a BF_4^- anion. Salt **2a** crystallized in a layer-type structure with hydrogen bonds between the -OH functionalities and Br^- anions of different layers. ¹⁰

The pyrylium salts **2a** and **2b** were further reacted with P(SiMe₃)₃¹² and the corresponding hydroxy-functionalized phosphabenzenes **3a** and **3b** were obtained (Scheme 2).

Alternatively, 3a/b were synthesized from the methoxyfunctionalized phosphabenzenes 4a/b, which were obtained from 1a/b and P(SiMe₃)₃. Cleavage of the $-\text{O-CH}_3$ group with BBr₃/CH₂Cl₂ followed by aqueous work-up gave the desired products **3a** and **3b** as yellow and red solids. In the ³¹P NMR spectrum, compound **3a** showed a resonance at $\delta = 188.9$ ppm (C₆D₆), and a resonance at $\delta = 197.6$ ppm (C₆D₆) was observed for **3b**.

Due to their phenolic –OH group, compounds 3a/b could easily be transformed into the corresponding chiral phosphabenzene–phosphites.¹³ Thus, reaction of 3a/b with (S)-BINOL-PCl¹⁴ in the presence of NEt₃ gave the desired bidentate ligands 5a and 5b, respectively (Scheme 3).

Compounds 5a/b were obtained in quantitative yields as yellow, air- and moisture-sensitive solids. Through-space coupling between the two different phosphorus nuclei was observed in the ³¹P NMR spectrum of 5a, as indicated by two doublets at $\delta = 190.3$ ppm (phosphabenzene-P) and $\delta = 145.4$ ppm (phosphite-P) and a coupling constant of $J_{P-P} = 5.9$ Hz (5b: $\delta = 197.6$ ppm, 145.0 ppm, $J_{P-P} = 10.4$ Hz).

Upon addition of **5a** to 1 equiv of Rh(cod)₂BF₄, reaction under loss of COD took place and the corresponding rhodium complex (P₁P₂)Rh(cod)BF₄ (**5a**/Rh⁺) was formed quantitatively. The ³¹P NMR spectrum of **5a**/Rh⁺ revealed that the phosphabenzene–phosphite ligand was indeed coordinated to the metal center in a bidentate fashion: ¹⁵ a doublet of doublets (J_{Rh-P1} = 172.9 Hz, J_{P1-P2} = 68.8 Hz) at δ = 160.5 ppm was observed in the phosphabenzene region P₁ as well as

Scheme 2. Synthesis of hydroxy-functionalized phosphabenzenes.

Download English Version:

https://daneshyari.com/en/article/5291422

Download Persian Version:

https://daneshyari.com/article/5291422

<u>Daneshyari.com</u>