
G-SHOT: GPU accelerated 3D local descriptor for surface matching q

Linjia Hu, Saeid Nooshabadi ⇑
Department of Computer Science, Michigan Technological University, Houghton, MI 49931, USA

a r t i c l e i n f o

Article history:
Received 2 December 2014
Accepted 18 May 2015
Available online 27 May 2015

Keywords:
3D Object local descriptor
Point signature
Surface matching
SHOT
Computer vision
Point cloud library
Parallel algorithm
GPU
Real-time processing
Point cloud

a b s t r a c t

Signature of histogram of orientations (SHOT) as a novel 3D object local descriptor can achieves a good
balance between descriptiveness and robustness in surface matching. However, its computation work-
load is much higher than the other 3D local descriptors. This paper investigates the development of suit-
able massively parallel algorithms on the graphics processing unit (GPU) for computation of high density
and large scale 3D object local descriptors through two alternative parallel algorithms; one exact, and one
approximate. Both algorithms exhibit outstanding speedup performance. The exact parallel descriptor
comes at no cost to the descriptiveness, with a speedup factor of up to 40.70, with respect to the serial
SHOT on the central processing unit (CPU). The approximate version achieves a corresponding speedup
factor of up to 54 with minor degradation in descriptiveness. The proposed algorithms are integrated into
point cloud library (PCL), a open source project for image and point cloud.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Surface matching is a key tool in three-dimensional (3D) object
recognition that locates model objects in a scene through building
local correspondences between the model and the scene. It has
found its way in numerous areas such as computer vision, robotics,
automation, remote sensing and perception. The most common
method for surface matching is to explore an effective and compact
local representations of the point cloud of 3D objects, known as
local 3D descriptors, and establish correspondences by matching
those descriptors. In the past 20 years there has been strong
research interest in local descriptors. The techniques proposed
includes structural indexing [1], point signature [2], 3D point fin-
gerprint [3], exponential mapping [4], spin images [5], local surface
patches [6], shape index [7], 3D shape context [8], and intrinsic
shape signatures [9]. The computation of a local descriptor
depends on local reference of each key point, with respect to a nor-
mal surface vector. However, in all these proposals, the choice of
local reference for each descriptor is ambiguous and not unique.

Most recent work [10,11] has analyzed the repeatability and
robustness of existing local descriptor techniques, and divided
them into two major categories, viz., signature and histogram.
The signature based descriptor describes the 3D neighborhood of

a given key point by defining an invariant local reference frame
(LRF), according to the local coordinates of points in the neighbor-
hood point set. For each point in neighborhood point set, one or
more geometric measurements are encoded. The histogram based
descriptor describes the key point by accumulating local geometri-
cal or topological measurements into histogram bins according to a
specific quantized domain which requires the definition of either a
reference axis or reference frame. Broadly, signature descriptors
are potentially highly descriptive due to the use of spatially well
localized information, whereas histograms descriptors trade-off
descriptive for robustness by compressing geometric structure into
bins. To leverage on benefits of both categories, a novel local 3D
descriptor named signature of histogram of orientations (SHOT)
[10] combines the merits of signature and histogram descriptors.
Due to its repeatable LRFs, the SHOT descriptor exhibits a better
descriptive power and robustness. However, its benefits comes at
a significant increase in the computational complexity.

A point cloud is a data structure for the representation of a
multi-dimensional collection of points. In a 3D point cloud, for
example, a point in the surface of an object is represented by its
x; y and z coordinates. The typical sources for point cloud data
set are stereo camera sensors, 3D scanners, or time-of-flight cam-
eras. They are also generated synthetically from a computer model.
Fig. 3 is the classic Stanford Bunny generated by a 3D point cloud
editor.

SHOT as an effective 3D descriptor has already been integrated
into Point cloud library (PCL), a large scale, open source project for

http://dx.doi.org/10.1016/j.jvcir.2015.05.008
1047-3203/� 2015 Elsevier Inc. All rights reserved.

q This paper has been recommended for acceptance by M.T. Sun.
⇑ Corresponding author.

E-mail addresses: linjiah@mtu.edu (L. Hu), saeid@mtu.edu (S. Nooshabadi).

J. Vis. Commun. Image R. 30 (2015) 343–349

Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate/ jvc i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvcir.2015.05.008&domain=pdf
http://dx.doi.org/10.1016/j.jvcir.2015.05.008
mailto:linjiah@mtu.edu
mailto:saeid@mtu.edu
http://dx.doi.org/10.1016/j.jvcir.2015.05.008
http://www.sciencedirect.com/science/journal/10473203
http://www.elsevier.com/locate/jvci


2D and 3D image and point cloud processing [12]. PCL framework
contains numerous state-of-the-art algorithms that can be used to
filter outliers from noisy data, stitch 3D point clouds together, seg-
ment relevant parts of a scene, extract key points and compute
descriptors to recognize objects in the scene based on their geomet-
ric appearance, create surfaces from point clouds and visualize them.

To overcome the performance bottleneck of the SHOT descrip-
tor in the PCL framework, this paper proposes two alternative
highly efficient parallel algorithms that target the massively paral-
lel architecture of graphical processing unit (GPU). We have tar-
geted implementation on GPU platform, as it is finding its way
beyond graphics processing into general purpose computing. It
offers massively data-parallel architecture alternative to central
processing unit (CPU) through large number of computing cores.
In particular, GPU has been widely employed for fast and
real-time implementation of 3D image and point cloud processing
algorithms [13–17]. The potential for the implementation of sur-
face matching algorithm on the GPU comes from the fact that
descriptor computations for key points are independent of each
other. It is well suited for parallelization on a massively parallel
programming paradigm of GPUs.1 This work presents two efficient
GPU accelerated parallel SHOT descriptors.

This paper is organized as follows. Section 2 briefly outlines the
mathematical model of SHOT descriptor. Section 3 describes the
complexity of SHOT descriptor and presents the exact and approx-
imate parallel alternative implementations of SHOT on GPU
(G-SHOT) as a library component in PCL framework. Section 4 pre-
sents the experimental results of performance of both algorithms.
Section 5 evaluates the trades-off between the speedup and
descriptiveness of two parallel G-SHOT descriptors. Section 6 con-
cludes the paper.

2. Mathematical model of SHOT descriptor

The strength of SHOT descriptor is based on two features. First
the SHOT is a 3D descriptor and has a repeatable and robust LRF.
Second, it combines the merits of signature and histogram cate-
gories of descriptors to create a more effective descriptor.

2.1. Repeatable local reference frame (LRF)

To facilitate the following mathematical derivation of LRF, we
assume that the radius of the neighborhood sphere for key point
p is R, and there are K nearest neighbors pi in the sphere, the
covariant matrix of the K points in the neighborhood sphere is M,
and the distance between key point p and neighbor point pi is di.

The repeatable LRF is based on the estimation of the normal
direction of key point on a surface [11]. This estimation involves
the total least square (TLS) of the normal direction computed by
eigenvalue decomposition (EVD) of the covariant matrix M of the
K points in the neighborhood sphere. TLS of normal direction is
represented by the eigenvector corresponding to the smallest
eigenvalue of M. To increase the repeatability of the LRF, in the
SHOT algorithm, smaller weights are assigned to distant points in
the sphere and bigger weight are assigned to nearby points. Also,
to improve the robustness, all the K points laying within the sphere
that will be used to calculate the descriptor are included in forma-
tion of the covariant matrix as,

M ¼ 1
PK

i:di6RðR� diÞ
�
XK

i:di6R

ðR� diÞðpi � pÞðpi � pÞ> ð1Þ

To uniquely determine the sign direction of the normal at the
key point the methodology described in [10] for sign disambigua-
tion for EVD is employed. The methodology is to change the sign of
each singular value or reorient each eigenvector to make it consis-
tent with the majority of the vectors used for the computation of
the normal. The sign of a normal along a local axes s 2 fx; y; zg is
determined to be as sþ or s� in the opposite direction as,

Sþs ¼
: fi : di 6 R ^ ðpi � pÞ � sþ P 0g ð2Þ

S�s ¼
: fi : di 6 R ^ ðpi � pÞ � s� P 0g ð3Þ

2.2. Descriptor organization

Inspired by well established 2D feature descriptor, scale invari-
ant feature transform (SIFT) [21], SHOT relies on a set of local his-
tograms that compute on a specific subsets of points defined by a
regular grid superimposed on the key point patch. For each key
point, the SHOT technique uses an isotropic spherical grid parti-
tioned along the radial, azimuth and elevation axes. The coarse
partitioning of the spatial grid produces a small cardinality of the
descriptors. The choice of 32 spatial volumes is proven to be ade-
quate, resulting in eight azimuth, two radial and two elevation
divisions [10,11]. Fig. 1 shows the formation of eight azimuth
and the two radial divisions, and Fig. 2 exhibits the formation
two elevation divisions.

Each segment within sphere in Fig. 3 encodes a descriptive
entity represented by its local histogram. The formation of the local
histogram is shown in Fig. 3, for a key point in the point cloud of
Stanford Bunny, with one neighbor sphere encompassing the point
(light green). For the local histograms of this sphere, we, sepa-
rately, accumulate point counts for each of the 32 segments into
bins according to function cos hi, with hi the angle between the nor-
mal at each point pi within the spherical grid segment (nv i

), and
the normal at the key point (nui

). Choice of binning using cos h
has the advantage that it can be easily computed by the dot pro-
duction as cos hi ¼ nv i

� nui
. Further, an equally spaced bins on

cos hi is equivalent to a spatial varying spaced bins on hi. This has
a significant advantage that coarser bins are created for directions
close to the reference normal direction and finer ones for the
orthogonal directions. For each of 32 volumes in the neighborhood
sphere of the key point there is local histograms with 10 bins. So,
there is a total of 320 bins for each key point descriptor. Since
the descriptor is based upon a set of local histograms, to avoid
boundary effects for each point being accumulated into a specified
local histogram bin, SHOT perform quadrilinear interpolation
between the bin in the local histogram and the bins having the
same index in the local histograms corresponding to the neighbor
spherical segments within the neighborhood sphere of the key
point under consideration.

3. Massive parallelization of SHOT descriptor on GPU

3.1. GPU programming model

The inherent massive-parallelism in the SHOT algorithm can be
exploited for implementation on any computing platform that sup-
ports fine-grain parallelism. In this paper, we use CUDA C/C++

extension for parallelizing the computation of SHOT descriptor
for each key point. The computing model in CUDA is shown in
Fig. 4. This model employs a single program multiple data
(SPMD) computing paradigm [22], where parallel programs are
encapsulated in kernel functions written in CUDA. All program
copies, viz. threads, are executed independent of each other.
Threads are further grouped into a thread block. Threads in a thread

1 In this paper we use NVIDIA’s compute unified device architecture (CUDA) [18]
computing paradigm. The GPU used in our experiment is the NVIDIA GTX570 with 15
streaming multiprocessor (SM), with each SM having 32 stream processor (SP) cores
[19,20].

344 L. Hu, S. Nooshabadi / J. Vis. Commun. Image R. 30 (2015) 343–349



Download English Version:

https://daneshyari.com/en/article/529146

Download Persian Version:

https://daneshyari.com/article/529146

Daneshyari.com

https://daneshyari.com/en/article/529146
https://daneshyari.com/article/529146
https://daneshyari.com

