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Abstract

We are developing a probabilistic technique for performing multiple target detection and localization based on data from a swarm of
flying sensors, for example to be mounted on a group of micro-UAVs (unmanned aerial vehicles). Swarms of sensors can facilitate detect-
ing and discriminating low signal-to-clutter targets by allowing correlation between different sensor types and/or different aspect angles.
However, for deployment of swarms to be feasible, UAVs must operate more autonomously. The current approach is designed to reduce
the load on humans controlling UAVs by providing computerized interpretation of a set of images from multiple sensors. We consider a
complex case in which target detection and localization are performed concurrently with sensor fusion, multi-target signature associa-
tion, and improved UAV navigation. This method yields the bonus feature of estimating precise tracks for UAVs, which may be appli-
cable for automatic collision avoidance. We cast the problem in a probabilistic framework known as modeling field theory (MFT), in
which the pdf of the data is composed of a mixture of components, each conditional upon parameters including target positions as well
as sensor kinematics. The most likely set of parameters is found by maximizing the log-likelihood function using an iterative approach
related to expectation-maximization. In terms of computational complexity, this approach scales linearly with number of targets and
sensors, which represents an improvement over most existing methods. Also, since data association is treated probabilistically, this
method is not prone to catastrophic failure if data association is incorrect. Results from computer simulations are described which quan-
titatively show the advantages of increasing the number of sensors in the swarm, both in terms of clutter suppression and more accurate
target localization.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This paper describes a probabilistic technique for per-
forming multiple target detection and localization based
on data from a swarm of flying optical sensors, for example
to be mounted on a group of micro-UAVs (unmanned aer-
ial vehicles). In this approach, target detection and map-
ping are performed concurrently with data association
and sensor tracking. This fact gives our method a perfor-

mance advantage, in principle, over most existing tech-
niques in which detection and data association are
performed as separate steps [1–3]. We cast the problem in
a probabilistic framework known as modeling field theory
(MFT), in which the pdf of the data is composed of a mix-
ture of components, each conditional upon parameters
including target positions as well as sensor kinematics
[1,4–6]. The most likely set of parameters is found by max-
imizing the log-likelihood function using an iterative
approach related to expectation-maximization. In terms
of computational complexity, this approach scales linearly
with number of targets and sensors, which represents a sig-
nificant improvement over most existing methods. Also,
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since data association is treated probabilistically, this
method is not prone to catastrophic failure if data associa-
tion is incorrect.

The problem falls under the broader area of ‘‘swarm
intelligence’’, which is currently an active area of research.
In military surveillance applications, progress in swarm
intelligence is expected to revolutionize the ways in which
unmanned aerial vehicles (UAVs) are used. The value
and potential of UAVs have been demonstrated in recent
military conflicts, where they have been used for dangerous
and/or tedious missions to reduce the risk of human casu-
alties. It is felt that UAV cooperation and swarming behav-
ior may yield advantages that will make UAVs, in general,
even more valuable [7–9]. The most obvious advantage
would be an increase in mission success rates due to
improved UAV survivability—hostile defenses would be
taxed by the sheer numbers in the swarm. Also, swarms
might be deployed in smart ways to increase the efficiency
of the geographical coverage. Finally, having access to
swarms of sensors may make it easier to detect and discrim-
inate low signal-to-clutter (S/C) targets by exploiting corre-
lations between different, complementary, sensor types
and/or different aspect angles. In a sense, the collection
of small sensors on individual UAVs would be equivalent
to a wide aperture, which can be exploited to yield much
better location and velocity estimates for targets, as well
as better detection and discrimination performance.

In order to make deployment of UAV swarms feasible,
it will be necessary for UAVs to operate more autono-
mously than is currently possible [7,9]. Presently UAVs
operate more or less like ‘‘binoculars with wings’’ with
human operators performing most duties, including low-
level functions like image analysis/interpretation and
obstacle/collision avoidance. Human operators (and data
links from UAVs to operators) would become quickly
overwhelmed attempting to control an entire swarm of
UAVs. The approach discussed in this paper is designed
to reduce the load on human operators by providing com-
puterized interpretation of images from multiple sensors. A
by-product of the approach is a set of precise tracks for
both targets and UAVs that may be applicable to auto-
matic collision avoidance.

One might think it unnecessary to compute UAV posi-
tions, since these can be measured directly using onboard
inertial devices and global-positioning systems (GPS).
However, the accuracy of GPS and inertial measurements
may be too rough to allow a particular target’s image (sig-
nature) in one frame to be reliably associated with its cor-
responding image in another frame (we discuss this ‘‘data
association problem’’ below in more detail), especially if
there are many closely spaced targets. For example, the
typical accuracy of GPS is on the order of ±10 m [10].
Also, while inertial devices and GPS measure absolute
position, they do not measure position relative to potential
obstacles. The algorithm described here provides a frame-
work for fine-tuning information from a GPS using out-
puts from visual (or other) sensors. Thus, in this problem

the term ‘‘sensor fusion’’ not only describes combining
information from multiple visual sensors, but it also
describes combining outputs from visual sensors with out-
puts from GPS sensors. For optimum performance, all
functions need to be performed concurrently [2,3]: signa-
ture association requires accurate UAV tracking, while
accurate localization of targets and UAVs requires signa-
ture association.

The algorithm works as follows. Consider the case in
which multiple UAVs fly over a group of targets, acquiring
digitized images (image frames) at multiple times. Within
these images, we refer to the group of pixels associated with
each target as a ‘‘signature’’. For each signature in each
image frame the data set consists of (a) a vector of classifi-
cation features computed from the signature, (b) the posi-
tion of the signature on the image focal plane, (c) the
time of acquisition for the corresponding image frame,
and (d) (optional) the output of onboard GPS or inertial
devices. From the aggregate data, we wish to identify tar-
gets of interest, and compute precise tracks for both UAVs
and objects in the scene. This task is accomplished within
the framework of modeling field theory (MFT) [1], as fol-
lows. First, a model of the data is developed, where model
parameters include locations and features of targets, and
coefficients of UAV equations of motion. By incorporating
sensor errors, a statistical model is obtained. The parame-
ters are then estimated by maximizing the log-likelihood
function, which gives a quantitative measure of how well
the model fits the set of measured data.1 MFT maximizes
the likelihood in the space of all parameters and all possible
mappings between targets and data, to associate signatures
with targets and iteratively solve for the parameters in an
efficient manner. Thus, we are not plagued with a combina-
torial search during data association like other optimum
techniques such as multiple hypothesis tracking (MHT). In
Sections 2 and 5 we further compare our technique with
existing approaches.

Modeling field theory (MFT) is a general approach used
to combine both physical and statistical models [1].
Whereas statistical analysis is a standard tool for analyzing
a single physical process, standard techniques are not
appropriate when multiple, competing, physical processes
are involved, including statistical uncertainty and unknown
physical parameters. However, MFT is explicitly designed
for these types of problems. Historically, MFT describes
biological systems in which neuronal fields are determined
by physical and statistical models [1]. In practice, the con-
vergence of MFT can be proven using expectation-maximi-
zation (EM), although prior to MFT EM was never before
applied in this manner. Section 2 discusses in more detail
how MFT relates to other EM-based approaches.

The paper is organized as follows. Section 2 provides a
review of the relevant literature, and a comparison of our

1 Of course, the log-likelihood will only measure the ‘‘goodness of fit’’
between the model and the data to the extent that the general form of the
model is correct.
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